{"title":"基于遗留数据和机器学习技术的埃塞俄比亚土壤组参考图:埃塞俄比亚土壤网格 1.0","authors":"Ashenafi Ali, Teklu Erkossa, Kiflu Gudeta, Wuletawu Abera, Ephrem Mesfin, Terefe Mekete, Mitiku Haile, Wondwosen Haile, Assefa Abegaz, Demeke Tafesse, Gebeyhu Belay, Mekonen Getahun, Sheleme Beyene, Mohamed Assen, Alemayehu Regassa, Yihenew G. Selassie, Solomon Tadesse, Dawit Abebe, Yitbarek Wolde, Nesru Hussien, Abebe Yirdaw, Addisu Mera, Tesema Admas, Feyera Wakoya, Awgachew Legesse, Nigat Tessema, Ayele Abebe, Simret Gebremariam, Yismaw Aregaw, Bizuayehu Abebaw, Damtew Bekele, Eylachew Zewdie, Steffen Schulz, Lulseged Tamene, Eyasu Elias","doi":"10.5194/soil-10-189-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Up-to-date digital soil resource information and its comprehensive understanding are crucial to supporting crop production and sustainable agricultural development. Generating such information through conventional approaches consumes time and resources, and is difficult for developing countries. In Ethiopia, the soil resource map that was in use is qualitative, dated (since 1984), and small scaled (1 : 2 M), which limit its practical applicability. Yet, a large legacy soil profile dataset accumulated over time and the emerging machine-learning modeling approaches can help in generating a high-quality quantitative digital soil map that can provide better soil information. Thus, a group of researchers formed a Coalition of the Willing for soil and agronomy data-sharing and collated about 20 000 soil profile data and stored them in a central database. The data were cleaned and harmonized using the latest soil profile data template and 14 681 profile data were prepared for modeling. Random forest was used to develop a continuous quantitative digital map of 18 World Reference Base (WRB) soil groups at 250 m resolution by integrating environmental covariates representing major soil-forming factors. The map was validated by experts through a rigorous process involving senior soil specialists or pedologists checking the map based on purposely selected district-level geographic windows across Ethiopia. The map is expected to be of tremendous value for soil management and other land-based development planning, given its improved spatial resolution and quantitative digital representation.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"85 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reference soil groups map of Ethiopia based on legacy data and machine learning-technique: EthioSoilGrids 1.0\",\"authors\":\"Ashenafi Ali, Teklu Erkossa, Kiflu Gudeta, Wuletawu Abera, Ephrem Mesfin, Terefe Mekete, Mitiku Haile, Wondwosen Haile, Assefa Abegaz, Demeke Tafesse, Gebeyhu Belay, Mekonen Getahun, Sheleme Beyene, Mohamed Assen, Alemayehu Regassa, Yihenew G. Selassie, Solomon Tadesse, Dawit Abebe, Yitbarek Wolde, Nesru Hussien, Abebe Yirdaw, Addisu Mera, Tesema Admas, Feyera Wakoya, Awgachew Legesse, Nigat Tessema, Ayele Abebe, Simret Gebremariam, Yismaw Aregaw, Bizuayehu Abebaw, Damtew Bekele, Eylachew Zewdie, Steffen Schulz, Lulseged Tamene, Eyasu Elias\",\"doi\":\"10.5194/soil-10-189-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Up-to-date digital soil resource information and its comprehensive understanding are crucial to supporting crop production and sustainable agricultural development. Generating such information through conventional approaches consumes time and resources, and is difficult for developing countries. In Ethiopia, the soil resource map that was in use is qualitative, dated (since 1984), and small scaled (1 : 2 M), which limit its practical applicability. Yet, a large legacy soil profile dataset accumulated over time and the emerging machine-learning modeling approaches can help in generating a high-quality quantitative digital soil map that can provide better soil information. Thus, a group of researchers formed a Coalition of the Willing for soil and agronomy data-sharing and collated about 20 000 soil profile data and stored them in a central database. The data were cleaned and harmonized using the latest soil profile data template and 14 681 profile data were prepared for modeling. Random forest was used to develop a continuous quantitative digital map of 18 World Reference Base (WRB) soil groups at 250 m resolution by integrating environmental covariates representing major soil-forming factors. The map was validated by experts through a rigorous process involving senior soil specialists or pedologists checking the map based on purposely selected district-level geographic windows across Ethiopia. The map is expected to be of tremendous value for soil management and other land-based development planning, given its improved spatial resolution and quantitative digital representation.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/soil-10-189-2024\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-10-189-2024","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Reference soil groups map of Ethiopia based on legacy data and machine learning-technique: EthioSoilGrids 1.0
Abstract. Up-to-date digital soil resource information and its comprehensive understanding are crucial to supporting crop production and sustainable agricultural development. Generating such information through conventional approaches consumes time and resources, and is difficult for developing countries. In Ethiopia, the soil resource map that was in use is qualitative, dated (since 1984), and small scaled (1 : 2 M), which limit its practical applicability. Yet, a large legacy soil profile dataset accumulated over time and the emerging machine-learning modeling approaches can help in generating a high-quality quantitative digital soil map that can provide better soil information. Thus, a group of researchers formed a Coalition of the Willing for soil and agronomy data-sharing and collated about 20 000 soil profile data and stored them in a central database. The data were cleaned and harmonized using the latest soil profile data template and 14 681 profile data were prepared for modeling. Random forest was used to develop a continuous quantitative digital map of 18 World Reference Base (WRB) soil groups at 250 m resolution by integrating environmental covariates representing major soil-forming factors. The map was validated by experts through a rigorous process involving senior soil specialists or pedologists checking the map based on purposely selected district-level geographic windows across Ethiopia. The map is expected to be of tremendous value for soil management and other land-based development planning, given its improved spatial resolution and quantitative digital representation.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).