针对非光滑和非凸最小化问题的非单调加速近端梯度法与可变步长策略

IF 1.8 3区 数学 Q1 Mathematics Journal of Global Optimization Pub Date : 2024-03-05 DOI:10.1007/s10898-024-01366-4
Hongwei Liu, Ting Wang, Zexian Liu
{"title":"针对非光滑和非凸最小化问题的非单调加速近端梯度法与可变步长策略","authors":"Hongwei Liu, Ting Wang, Zexian Liu","doi":"10.1007/s10898-024-01366-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the problem that minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting, which arising in many contemporary applications such as machine learning, statistics, and signal/image processing. To solve this problem, we propose a new nonmonotone accelerated proximal gradient method with variable stepsize strategy. Note that incorporating inertial term into proximal gradient method is a simple and efficient acceleration technique, while the descent property of the proximal gradient algorithm will lost. In our algorithm, the iterates generated by inertial proximal gradient scheme are accepted when the objective function values decrease or increase appropriately; otherwise, the iteration point is generated by proximal gradient scheme, which makes the function values on a subset of iterates are decreasing. We also introduce a variable stepsize strategy, which does not need a line search or does not need to know the Lipschitz constant and makes the algorithm easy to implement. We show that the sequence of iterates generated by the algorithm converges to a critical point of the objective function. Further, under the assumption that the objective function satisfies the Kurdyka–Łojasiewicz inequality, we prove the convergence rates of the objective function values and the iterates. Moreover, numerical results on both convex and nonconvex problems are reported to demonstrate the effectiveness and superiority of the proposed method and stepsize strategy.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"192 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nonmonotone accelerated proximal gradient method with variable stepsize strategy for nonsmooth and nonconvex minimization problems\",\"authors\":\"Hongwei Liu, Ting Wang, Zexian Liu\",\"doi\":\"10.1007/s10898-024-01366-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the problem that minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting, which arising in many contemporary applications such as machine learning, statistics, and signal/image processing. To solve this problem, we propose a new nonmonotone accelerated proximal gradient method with variable stepsize strategy. Note that incorporating inertial term into proximal gradient method is a simple and efficient acceleration technique, while the descent property of the proximal gradient algorithm will lost. In our algorithm, the iterates generated by inertial proximal gradient scheme are accepted when the objective function values decrease or increase appropriately; otherwise, the iteration point is generated by proximal gradient scheme, which makes the function values on a subset of iterates are decreasing. We also introduce a variable stepsize strategy, which does not need a line search or does not need to know the Lipschitz constant and makes the algorithm easy to implement. We show that the sequence of iterates generated by the algorithm converges to a critical point of the objective function. Further, under the assumption that the objective function satisfies the Kurdyka–Łojasiewicz inequality, we prove the convergence rates of the objective function values and the iterates. Moreover, numerical results on both convex and nonconvex problems are reported to demonstrate the effectiveness and superiority of the proposed method and stepsize strategy.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01366-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01366-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了在非凸环境中最小化非光滑函数与光滑函数之和的问题,这个问题在机器学习、统计和信号/图像处理等许多当代应用中都会出现。为了解决这个问题,我们提出了一种采用可变步长策略的新的非单调加速近似梯度法。需要注意的是,在近似梯度法中加入惯性项是一种简单高效的加速技术,但会失去近似梯度算法的下降特性。在我们的算法中,当目标函数值适当减少或增加时,惯性近似梯度方案产生的迭代点被接受;否则,迭代点由近似梯度方案产生,这使得迭代点子集上的函数值不断减少。我们还引入了可变步长策略,它不需要线性搜索,也不需要知道 Lipschitz 常数,使算法易于实现。我们证明,算法产生的迭代序列会收敛到目标函数的临界点。此外,在目标函数满足 Kurdyka-Łojasiewicz 不等式的假设下,我们证明了目标函数值和迭代的收敛率。此外,我们还报告了凸问题和非凸问题的数值结果,以证明所提方法和步长策略的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A nonmonotone accelerated proximal gradient method with variable stepsize strategy for nonsmooth and nonconvex minimization problems

In this paper, we consider the problem that minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting, which arising in many contemporary applications such as machine learning, statistics, and signal/image processing. To solve this problem, we propose a new nonmonotone accelerated proximal gradient method with variable stepsize strategy. Note that incorporating inertial term into proximal gradient method is a simple and efficient acceleration technique, while the descent property of the proximal gradient algorithm will lost. In our algorithm, the iterates generated by inertial proximal gradient scheme are accepted when the objective function values decrease or increase appropriately; otherwise, the iteration point is generated by proximal gradient scheme, which makes the function values on a subset of iterates are decreasing. We also introduce a variable stepsize strategy, which does not need a line search or does not need to know the Lipschitz constant and makes the algorithm easy to implement. We show that the sequence of iterates generated by the algorithm converges to a critical point of the objective function. Further, under the assumption that the objective function satisfies the Kurdyka–Łojasiewicz inequality, we prove the convergence rates of the objective function values and the iterates. Moreover, numerical results on both convex and nonconvex problems are reported to demonstrate the effectiveness and superiority of the proposed method and stepsize strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Global Optimization
Journal of Global Optimization 数学-应用数学
CiteScore
0.10
自引率
5.60%
发文量
137
审稿时长
6 months
期刊介绍: The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest. In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.
期刊最新文献
Smoothing penalty approach for solving second-order cone complementarity problems Aircraft conflict resolution with trajectory recovery using mixed-integer programming Improved approximation algorithms for the k-path partition problem A QoS and sustainability-driven two-stage service composition method in cloud manufacturing: combining clustering and bi-objective optimization On convergence of a q-random coordinate constrained algorithm for non-convex problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1