Xuejun Chen, Ying Wang, Haitao Zhang, Jianzhou Wang
{"title":"利用特征选择和深度学习的新型混合预报模型用于风速研究","authors":"Xuejun Chen, Ying Wang, Haitao Zhang, Jianzhou Wang","doi":"10.1002/for.3098","DOIUrl":null,"url":null,"abstract":"<p>Accurate wind speed prediction is of great importance for the operation of wind farms, and extensive efforts have been made to develop effective forecasting methods in this regard. However, the feature selection of data input as well as optimization of deep learning models have received comparatively less attention, leading to unreliable forecasting results. This research proposes a novel hybrid model that integrates data preprocessing, feature selection, and optimized forecasting for improved wind speed prediction. Specifically, a powerful preprocessing technique is utilized to reduce data noise disturbances, while an innovative two-stage feature selection is designed to achieve the optimal input data format for forecasting purposes. Moreover, a hybrid forecasting module based on long-short term memory, which is optimized by the Bayesian optimization algorithm, has been developed to enhance the efficiency and reliability of the model. The empirical study used 10-min interval wind speed data of four seasons for presentation and evaluation results demonstrated its superior performance in effectively learning the volatility and irregularity features of wind speed series, which established a solid foundation for practical applications in wind power systems.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid forecasting model with feature selection and deep learning for wind speed research\",\"authors\":\"Xuejun Chen, Ying Wang, Haitao Zhang, Jianzhou Wang\",\"doi\":\"10.1002/for.3098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate wind speed prediction is of great importance for the operation of wind farms, and extensive efforts have been made to develop effective forecasting methods in this regard. However, the feature selection of data input as well as optimization of deep learning models have received comparatively less attention, leading to unreliable forecasting results. This research proposes a novel hybrid model that integrates data preprocessing, feature selection, and optimized forecasting for improved wind speed prediction. Specifically, a powerful preprocessing technique is utilized to reduce data noise disturbances, while an innovative two-stage feature selection is designed to achieve the optimal input data format for forecasting purposes. Moreover, a hybrid forecasting module based on long-short term memory, which is optimized by the Bayesian optimization algorithm, has been developed to enhance the efficiency and reliability of the model. The empirical study used 10-min interval wind speed data of four seasons for presentation and evaluation results demonstrated its superior performance in effectively learning the volatility and irregularity features of wind speed series, which established a solid foundation for practical applications in wind power systems.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3098\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3098","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
A novel hybrid forecasting model with feature selection and deep learning for wind speed research
Accurate wind speed prediction is of great importance for the operation of wind farms, and extensive efforts have been made to develop effective forecasting methods in this regard. However, the feature selection of data input as well as optimization of deep learning models have received comparatively less attention, leading to unreliable forecasting results. This research proposes a novel hybrid model that integrates data preprocessing, feature selection, and optimized forecasting for improved wind speed prediction. Specifically, a powerful preprocessing technique is utilized to reduce data noise disturbances, while an innovative two-stage feature selection is designed to achieve the optimal input data format for forecasting purposes. Moreover, a hybrid forecasting module based on long-short term memory, which is optimized by the Bayesian optimization algorithm, has been developed to enhance the efficiency and reliability of the model. The empirical study used 10-min interval wind speed data of four seasons for presentation and evaluation results demonstrated its superior performance in effectively learning the volatility and irregularity features of wind speed series, which established a solid foundation for practical applications in wind power systems.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.