{"title":"指数 Runge-Kutta 积分器的自适应理性克雷洛夫方法","authors":"Kai Bergermann, Martin Stoll","doi":"10.1137/23m1559439","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 744-770, March 2024. <br/> Abstract. We consider the solution of large stiff systems of ODEs with explicit exponential Runge–Kutta integrators. These problems arise from semidiscretized semilinear parabolic PDEs on continuous domains or on inherently discrete graph domains. A series of results reduces the requirement of computing linear combinations of [math]-functions in exponential integrators to the approximation of the action of a smaller number of matrix exponentials on certain vectors. State-of-the-art computational methods use polynomial Krylov subspaces of adaptive size for this task. They have the drawback that the required number of Krylov subspace iterations to obtain a desired tolerance increases drastically with the spectral radius of the discrete linear differential operator, e.g., the problem size. We present an approach that leverages rational Krylov subspace methods promising superior approximation qualities. We prove a novel a posteriori error estimate of rational Krylov approximations to the action of the matrix exponential on vectors for single time points, which allows for an adaptive approach similar to existing polynomial Krylov techniques. We discuss pole selection and the efficient solution of the arising sequences of shifted linear systems by direct and preconditioned iterative solvers. Numerical experiments show that our method outperforms the state of the art for sufficiently large spectral radii of the discrete linear differential operators. The key to this are approximately constant numbers of rational Krylov iterations, which enable a near-linear scaling of the runtime with respect to the problem size.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Rational Krylov Methods for Exponential Runge–Kutta Integrators\",\"authors\":\"Kai Bergermann, Martin Stoll\",\"doi\":\"10.1137/23m1559439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 744-770, March 2024. <br/> Abstract. We consider the solution of large stiff systems of ODEs with explicit exponential Runge–Kutta integrators. These problems arise from semidiscretized semilinear parabolic PDEs on continuous domains or on inherently discrete graph domains. A series of results reduces the requirement of computing linear combinations of [math]-functions in exponential integrators to the approximation of the action of a smaller number of matrix exponentials on certain vectors. State-of-the-art computational methods use polynomial Krylov subspaces of adaptive size for this task. They have the drawback that the required number of Krylov subspace iterations to obtain a desired tolerance increases drastically with the spectral radius of the discrete linear differential operator, e.g., the problem size. We present an approach that leverages rational Krylov subspace methods promising superior approximation qualities. We prove a novel a posteriori error estimate of rational Krylov approximations to the action of the matrix exponential on vectors for single time points, which allows for an adaptive approach similar to existing polynomial Krylov techniques. We discuss pole selection and the efficient solution of the arising sequences of shifted linear systems by direct and preconditioned iterative solvers. Numerical experiments show that our method outperforms the state of the art for sufficiently large spectral radii of the discrete linear differential operators. The key to this are approximately constant numbers of rational Krylov iterations, which enable a near-linear scaling of the runtime with respect to the problem size.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1559439\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1559439","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Adaptive Rational Krylov Methods for Exponential Runge–Kutta Integrators
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 744-770, March 2024. Abstract. We consider the solution of large stiff systems of ODEs with explicit exponential Runge–Kutta integrators. These problems arise from semidiscretized semilinear parabolic PDEs on continuous domains or on inherently discrete graph domains. A series of results reduces the requirement of computing linear combinations of [math]-functions in exponential integrators to the approximation of the action of a smaller number of matrix exponentials on certain vectors. State-of-the-art computational methods use polynomial Krylov subspaces of adaptive size for this task. They have the drawback that the required number of Krylov subspace iterations to obtain a desired tolerance increases drastically with the spectral radius of the discrete linear differential operator, e.g., the problem size. We present an approach that leverages rational Krylov subspace methods promising superior approximation qualities. We prove a novel a posteriori error estimate of rational Krylov approximations to the action of the matrix exponential on vectors for single time points, which allows for an adaptive approach similar to existing polynomial Krylov techniques. We discuss pole selection and the efficient solution of the arising sequences of shifted linear systems by direct and preconditioned iterative solvers. Numerical experiments show that our method outperforms the state of the art for sufficiently large spectral radii of the discrete linear differential operators. The key to this are approximately constant numbers of rational Krylov iterations, which enable a near-linear scaling of the runtime with respect to the problem size.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.