{"title":"基于内部模型的自动驾驶汽车鲁棒路径跟踪控制","authors":"Adorján Kovács, István Vajk","doi":"10.1007/s12239-024-00003-z","DOIUrl":null,"url":null,"abstract":"<p>The paper presents a new internal model control (IMC) based control technique for lateral trajectory tracking of autonomous vehicles. The controller’s proposed structure employs a robust, fault-tolerant nonlinear internal servo control with optimal reference generation concerning vehicle yaw stability and physical limitations. The presented inscription of the reference generation creates a convex optimization task that can be used in real-time applications. Improvements in yaw-rate stability of vehicle motion control are first shown through simulation results performed in a Simulink environment. The controller structure was also implemented in a real-time model and was examined in a Mercedes C-Class vehicle. In this article, the simulation results and the real-time measurements are presented. The results show that the proposed controller has high efficiency in disturbance rejection and lower sensitivity towards parameter changes compared to a model predictive control (MPC) structure.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal Model-Based Robust Path-Following Control for Autonomous Vehicles\",\"authors\":\"Adorján Kovács, István Vajk\",\"doi\":\"10.1007/s12239-024-00003-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents a new internal model control (IMC) based control technique for lateral trajectory tracking of autonomous vehicles. The controller’s proposed structure employs a robust, fault-tolerant nonlinear internal servo control with optimal reference generation concerning vehicle yaw stability and physical limitations. The presented inscription of the reference generation creates a convex optimization task that can be used in real-time applications. Improvements in yaw-rate stability of vehicle motion control are first shown through simulation results performed in a Simulink environment. The controller structure was also implemented in a real-time model and was examined in a Mercedes C-Class vehicle. In this article, the simulation results and the real-time measurements are presented. The results show that the proposed controller has high efficiency in disturbance rejection and lower sensitivity towards parameter changes compared to a model predictive control (MPC) structure.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00003-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00003-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种基于内部模型控制(IMC)的新型控制技术,用于自动驾驶车辆的横向轨迹跟踪。该控制器的拟议结构采用了鲁棒、容错的非线性内部伺服控制,并根据车辆偏航稳定性和物理限制生成最佳参考值。所提出的基准生成方法创建了一个凸优化任务,可用于实时应用。在 Simulink 环境中进行的仿真结果首先显示了车辆运动控制偏航率稳定性的改善。控制器结构也在实时模型中实现,并在梅赛德斯 C 级汽车中进行了检验。本文介绍了仿真结果和实时测量结果。结果表明,与模型预测控制 (MPC) 结构相比,所提出的控制器具有较高的干扰抑制效率和较低的参数变化敏感性。
Internal Model-Based Robust Path-Following Control for Autonomous Vehicles
The paper presents a new internal model control (IMC) based control technique for lateral trajectory tracking of autonomous vehicles. The controller’s proposed structure employs a robust, fault-tolerant nonlinear internal servo control with optimal reference generation concerning vehicle yaw stability and physical limitations. The presented inscription of the reference generation creates a convex optimization task that can be used in real-time applications. Improvements in yaw-rate stability of vehicle motion control are first shown through simulation results performed in a Simulink environment. The controller structure was also implemented in a real-time model and was examined in a Mercedes C-Class vehicle. In this article, the simulation results and the real-time measurements are presented. The results show that the proposed controller has high efficiency in disturbance rejection and lower sensitivity towards parameter changes compared to a model predictive control (MPC) structure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.