{"title":"非凸圆锥优化的黑森障碍算法","authors":"Pavel Dvurechensky, Mathias Staudigl","doi":"10.1007/s10107-024-02062-7","DOIUrl":null,"url":null,"abstract":"<p>A key problem in mathematical imaging, signal processing and computational statistics is the minimization of non-convex objective functions that may be non-differentiable at the relative boundary of the feasible set. This paper proposes a new family of first- and second-order interior-point methods for non-convex optimization problems with linear and conic constraints, combining logarithmically homogeneous barriers with quadratic and cubic regularization respectively. Our approach is based on a potential-reduction mechanism and, under the Lipschitz continuity of the corresponding derivative with respect to the local barrier-induced norm, attains a suitably defined class of approximate first- or second-order KKT points with worst-case iteration complexity <span>\\(O(\\varepsilon ^{-2})\\)</span> (first-order) and <span>\\(O(\\varepsilon ^{-3/2})\\)</span> (second-order), respectively. Based on these findings, we develop new path-following schemes attaining the same complexity, modulo adjusting constants. These complexity bounds are known to be optimal in the unconstrained case, and our work shows that they are upper bounds in the case with complicated constraints as well. To the best of our knowledge, this work is the first which achieves these worst-case complexity bounds under such weak conditions for general conic constrained non-convex optimization problems.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"4 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hessian barrier algorithms for non-convex conic optimization\",\"authors\":\"Pavel Dvurechensky, Mathias Staudigl\",\"doi\":\"10.1007/s10107-024-02062-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A key problem in mathematical imaging, signal processing and computational statistics is the minimization of non-convex objective functions that may be non-differentiable at the relative boundary of the feasible set. This paper proposes a new family of first- and second-order interior-point methods for non-convex optimization problems with linear and conic constraints, combining logarithmically homogeneous barriers with quadratic and cubic regularization respectively. Our approach is based on a potential-reduction mechanism and, under the Lipschitz continuity of the corresponding derivative with respect to the local barrier-induced norm, attains a suitably defined class of approximate first- or second-order KKT points with worst-case iteration complexity <span>\\\\(O(\\\\varepsilon ^{-2})\\\\)</span> (first-order) and <span>\\\\(O(\\\\varepsilon ^{-3/2})\\\\)</span> (second-order), respectively. Based on these findings, we develop new path-following schemes attaining the same complexity, modulo adjusting constants. These complexity bounds are known to be optimal in the unconstrained case, and our work shows that they are upper bounds in the case with complicated constraints as well. To the best of our knowledge, this work is the first which achieves these worst-case complexity bounds under such weak conditions for general conic constrained non-convex optimization problems.</p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02062-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02062-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Hessian barrier algorithms for non-convex conic optimization
A key problem in mathematical imaging, signal processing and computational statistics is the minimization of non-convex objective functions that may be non-differentiable at the relative boundary of the feasible set. This paper proposes a new family of first- and second-order interior-point methods for non-convex optimization problems with linear and conic constraints, combining logarithmically homogeneous barriers with quadratic and cubic regularization respectively. Our approach is based on a potential-reduction mechanism and, under the Lipschitz continuity of the corresponding derivative with respect to the local barrier-induced norm, attains a suitably defined class of approximate first- or second-order KKT points with worst-case iteration complexity \(O(\varepsilon ^{-2})\) (first-order) and \(O(\varepsilon ^{-3/2})\) (second-order), respectively. Based on these findings, we develop new path-following schemes attaining the same complexity, modulo adjusting constants. These complexity bounds are known to be optimal in the unconstrained case, and our work shows that they are upper bounds in the case with complicated constraints as well. To the best of our knowledge, this work is the first which achieves these worst-case complexity bounds under such weak conditions for general conic constrained non-convex optimization problems.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.