在包含非局部和双曲双温效应的摩尔-吉布森-汤普森热方程框架内分析广义微波热弹性中的轴对称变形

Rajneesh Kumar, Sachin Kaushal, Arun Kochar
{"title":"在包含非局部和双曲双温效应的摩尔-吉布森-汤普森热方程框架内分析广义微波热弹性中的轴对称变形","authors":"Rajneesh Kumar, Sachin Kaushal, Arun Kochar","doi":"10.1177/03093247241232180","DOIUrl":null,"url":null,"abstract":"An axisymmetric problem in micropolar thermoelastic model based on the Moore-Gibson-Thompson heat equation (MGT) under non-local and hyperbolic two-temperature (HTT) is explored due to mechanical loading. After transforming the system of equations into dimensionless form and employing potential functions, a new set of governing equations are solved using Laplace and Hankel transforms. A specific set of restrictions are applied on the boundary in the form of ring load and disk load for examining the significance of the problem. The transformed form of components of displacement, stresses, tangential couple stress, conductive temperature, and thermodynamic temperature are obtained. A numerical inversion technique is applied to recover the physical quantities in the original domain. The graphic representation of numerical findings for stress components, tangential couple stress, and conductive temperature reveals the impact of non-local and HTT parameters. Certain cases of interest are drawn out. Physical views presented in the article may be useful for the composition of new materials, geophysics, earthquake engineering, and other scientific disciplines.","PeriodicalId":517390,"journal":{"name":"The Journal of Strain Analysis for Engineering Design","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of axisymmetric deformation in generalized micropolar thermoelasticity within the framework of Moore-Gibson-Thompson heat equation incorporating non-local and hyperbolic two-temperature effect\",\"authors\":\"Rajneesh Kumar, Sachin Kaushal, Arun Kochar\",\"doi\":\"10.1177/03093247241232180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An axisymmetric problem in micropolar thermoelastic model based on the Moore-Gibson-Thompson heat equation (MGT) under non-local and hyperbolic two-temperature (HTT) is explored due to mechanical loading. After transforming the system of equations into dimensionless form and employing potential functions, a new set of governing equations are solved using Laplace and Hankel transforms. A specific set of restrictions are applied on the boundary in the form of ring load and disk load for examining the significance of the problem. The transformed form of components of displacement, stresses, tangential couple stress, conductive temperature, and thermodynamic temperature are obtained. A numerical inversion technique is applied to recover the physical quantities in the original domain. The graphic representation of numerical findings for stress components, tangential couple stress, and conductive temperature reveals the impact of non-local and HTT parameters. Certain cases of interest are drawn out. Physical views presented in the article may be useful for the composition of new materials, geophysics, earthquake engineering, and other scientific disciplines.\",\"PeriodicalId\":517390,\"journal\":{\"name\":\"The Journal of Strain Analysis for Engineering Design\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247241232180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Strain Analysis for Engineering Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03093247241232180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了基于摩尔-吉布森-汤普森热方程 (MGT) 的微波热弹性模型在非局部和双曲双温 (HTT) 条件下由于机械负载而产生的轴对称问题。在将方程系统转换为无量纲形式并采用势函数后,利用拉普拉斯变换和汉克尔变换求解了一组新的控制方程。为研究问题的重要性,以环载荷和盘载荷的形式对边界施加了一组特定的限制。得到了位移、应力、切向耦合应力、传导温度和热力学温度成分的变换形式。应用数值反演技术恢复原始域中的物理量。应力分量、切向耦合应力和传导温度的数值结果的图形显示了非局部参数和 HTT 参数的影响。文章还引出了某些值得关注的案例。文章提出的物理观点可能对新材料的构成、地球物理学、地震工程学和其他科学学科有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of axisymmetric deformation in generalized micropolar thermoelasticity within the framework of Moore-Gibson-Thompson heat equation incorporating non-local and hyperbolic two-temperature effect
An axisymmetric problem in micropolar thermoelastic model based on the Moore-Gibson-Thompson heat equation (MGT) under non-local and hyperbolic two-temperature (HTT) is explored due to mechanical loading. After transforming the system of equations into dimensionless form and employing potential functions, a new set of governing equations are solved using Laplace and Hankel transforms. A specific set of restrictions are applied on the boundary in the form of ring load and disk load for examining the significance of the problem. The transformed form of components of displacement, stresses, tangential couple stress, conductive temperature, and thermodynamic temperature are obtained. A numerical inversion technique is applied to recover the physical quantities in the original domain. The graphic representation of numerical findings for stress components, tangential couple stress, and conductive temperature reveals the impact of non-local and HTT parameters. Certain cases of interest are drawn out. Physical views presented in the article may be useful for the composition of new materials, geophysics, earthquake engineering, and other scientific disciplines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase field thermal shock analysis of rotating porous cracked pretwisted FGM microblade using exact shear correction factor Predictive modeling of spring-back in pre-punched sheet roll forming using machine learning Eliminating eccentricity error in measuring residual stresses via hole-drilling method using strain gauge rosette with five measuring grids: For thin plates using through-holes Creep damage assessment of HR3C austenitic steel by using misorientation parameters derived from EBSD technique 3D dynamic contact analysis of tyre internal deformation using 2D image sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1