台风 "兰"(2023 年)诱发的西日本北侧暴雨:日本海海面温度高和地形诱发的中尺度低气压的作用

IF 1.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Sola Pub Date : 2024-03-05 DOI:10.2151/sola.2024-015
Satoki Tsujino, Akiyoshi Wada, Teruyuki Kato
{"title":"台风 \"兰\"(2023 年)诱发的西日本北侧暴雨:日本海海面温度高和地形诱发的中尺度低气压的作用","authors":"Satoki Tsujino, Akiyoshi Wada, Teruyuki Kato","doi":"10.2151/sola.2024-015","DOIUrl":null,"url":null,"abstract":"</p><p>An extreme rainfall event with 48-h accumulated precipitation amounts exceeding 500 mm on the north (Japan Sea) side of western Japan occurred when Typhoon Lan (2023) approached and passed over Japan in a weak baroclinic environment. The rainfall event included two local heavy precipitation peaks. In the present study, we perform numerical simulations with a cloud-system-resolving model to investigate the potential roles of two factors in the first event peak: (1) an abnormally high sea surface temperature (AHSST) anomaly (∼ +4°C) and (2) a mesoscale low formed over the Sea of Japan. The results of sensitivity experiments showed that the AHSST increased the total rainfall amount by about 100 mm. The mesoscale low, which was generated by southeasterly flows over the mountain ranges of central Japan, determined the location of the heavy rainfall by controlling the direction and intensity of low-level flows. The role of this terrain-induced mesoscale low provided new insight into the mechanisms producing heavy rainfall in association with typhoons approaching Japan in a weak baroclinic environment.</p>\n<p></p>","PeriodicalId":49501,"journal":{"name":"Sola","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy Rainfall on the North Side of Western Japan Induced by Typhoon Lan (2023): Roles of High Sea Surface Temperature over the Sea of Japan and a Terrain-Induced Mesoscale Low\",\"authors\":\"Satoki Tsujino, Akiyoshi Wada, Teruyuki Kato\",\"doi\":\"10.2151/sola.2024-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>An extreme rainfall event with 48-h accumulated precipitation amounts exceeding 500 mm on the north (Japan Sea) side of western Japan occurred when Typhoon Lan (2023) approached and passed over Japan in a weak baroclinic environment. The rainfall event included two local heavy precipitation peaks. In the present study, we perform numerical simulations with a cloud-system-resolving model to investigate the potential roles of two factors in the first event peak: (1) an abnormally high sea surface temperature (AHSST) anomaly (∼ +4°C) and (2) a mesoscale low formed over the Sea of Japan. The results of sensitivity experiments showed that the AHSST increased the total rainfall amount by about 100 mm. The mesoscale low, which was generated by southeasterly flows over the mountain ranges of central Japan, determined the location of the heavy rainfall by controlling the direction and intensity of low-level flows. The role of this terrain-induced mesoscale low provided new insight into the mechanisms producing heavy rainfall in association with typhoons approaching Japan in a weak baroclinic environment.</p>\\n<p></p>\",\"PeriodicalId\":49501,\"journal\":{\"name\":\"Sola\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sola\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/sola.2024-015\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sola","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-015","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

台风 "兰"(2023 年)在弱气压环境下接近并经过日本时,在西日本北部(日本海)发生了 48 小时累计降水量超过 500 毫米的极端降雨事件。降雨事件包括两个局地强降水峰值。在本研究中,我们利用云系统解析模式进行了数值模拟,研究了两个因素在第一个降水峰中的潜在作用:(1)异常高的海面温度(AHSST)异常(∼ +4°C)和(2)在日本海上空形成的中尺度低点。敏感性实验结果表明,AHSST 使总降雨量增加了约 100 毫米。中尺度低气压是由日本中部山脉上空的东南气流产生的,它通过控制低层气流的方向和强度来决定强降雨的位置。这种由地形引起的中尺度低气压的作用使人们对台风在弱气压环境下接近日本时产生强降雨的机制有了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heavy Rainfall on the North Side of Western Japan Induced by Typhoon Lan (2023): Roles of High Sea Surface Temperature over the Sea of Japan and a Terrain-Induced Mesoscale Low

An extreme rainfall event with 48-h accumulated precipitation amounts exceeding 500 mm on the north (Japan Sea) side of western Japan occurred when Typhoon Lan (2023) approached and passed over Japan in a weak baroclinic environment. The rainfall event included two local heavy precipitation peaks. In the present study, we perform numerical simulations with a cloud-system-resolving model to investigate the potential roles of two factors in the first event peak: (1) an abnormally high sea surface temperature (AHSST) anomaly (∼ +4°C) and (2) a mesoscale low formed over the Sea of Japan. The results of sensitivity experiments showed that the AHSST increased the total rainfall amount by about 100 mm. The mesoscale low, which was generated by southeasterly flows over the mountain ranges of central Japan, determined the location of the heavy rainfall by controlling the direction and intensity of low-level flows. The role of this terrain-induced mesoscale low provided new insight into the mechanisms producing heavy rainfall in association with typhoons approaching Japan in a weak baroclinic environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sola
Sola 地学-气象与大气科学
CiteScore
3.50
自引率
21.10%
发文量
41
审稿时长
>12 weeks
期刊介绍: SOLA (Scientific Online Letters on the Atmosphere) is a peer-reviewed, Open Access, online-only journal. It publishes scientific discoveries and advances in understanding in meteorology, climatology, the atmospheric sciences and related interdisciplinary areas. SOLA focuses on presenting new and scientifically rigorous observations, experiments, data analyses, numerical modeling, data assimilation, and technical developments as quickly as possible. It achieves this via rapid peer review and publication of research letters, published as Regular Articles. Published and supported by the Meteorological Society of Japan, the journal follows strong research and publication ethics principles. Most manuscripts receive a first decision within one month and a decision upon resubmission within a further month. Accepted articles are then quickly published on the journal’s website, where they are easily accessible to our broad audience.
期刊最新文献
Effects of soil texture datasets on FGOALS-g3 global long-term simulations Massive Parameter Sweep Experiment on Convective Cloud Environment: Changes in Rainfall Characteristics in Moisture–Instability–Shear Space Improving Air-Sea Observations of Typhoons Using Wave Gliders The Impact of Anthropogenic Global Warming and Oceanic Forcing on the Frequency of Quasi-stationary Band-Shaped Precipitation Systems, “Senjo-Kousuitai”, during the Rainy Season of 2023 Compact Microwave Radiometer for Water Vapor Estimation with Machine Learning Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1