藻酸盐抗菌肽纳米凝胶的一锅合成。

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Photochemical & Photobiological Sciences Pub Date : 2024-04-01 Epub Date: 2024-03-06 DOI:10.1007/s43630-024-00542-5
Brianne Salvati, Johanna Marcela Flórez-Castillo, Patricio Román Santagapita, Beatriz C Barja, Mercedes Perullini
{"title":"藻酸盐抗菌肽纳米凝胶的一锅合成。","authors":"Brianne Salvati, Johanna Marcela Flórez-Castillo, Patricio Román Santagapita, Beatriz C Barja, Mercedes Perullini","doi":"10.1007/s43630-024-00542-5","DOIUrl":null,"url":null,"abstract":"<p><p>Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution. In this work, we optimized the synthesis conditions of IbM6-NAPs based on small-angle X-ray scattering (SAXS) measurements and evaluated its time evolution over several weeks by sensing the IbM6 environment in IbM6-NAPs from photochemical experiments. Fluorescence deactivation experiments revealed that the accessibility of different quenchers to the IbM6 peptide embedded in NAPs is dependent on the aging time of the alginate network. Lifetimes measurements indicate that the deactivation paths of the excited state of the IbM6 in the nanoaggregates are reduced when compared with those exhibited by the peptide in aqueous solution, and are also dependent on the aging time of the nanosized alginate network. Finally, the entrapment of IbM6 in NAPs hinders the degradation of the peptide by trypsin, increasing its antimicrobial activity against Escherichia coli K-12 in simulated operation conditions.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-pot synthesis of alginate-antimicrobial peptide nanogel.\",\"authors\":\"Brianne Salvati, Johanna Marcela Flórez-Castillo, Patricio Román Santagapita, Beatriz C Barja, Mercedes Perullini\",\"doi\":\"10.1007/s43630-024-00542-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution. In this work, we optimized the synthesis conditions of IbM6-NAPs based on small-angle X-ray scattering (SAXS) measurements and evaluated its time evolution over several weeks by sensing the IbM6 environment in IbM6-NAPs from photochemical experiments. Fluorescence deactivation experiments revealed that the accessibility of different quenchers to the IbM6 peptide embedded in NAPs is dependent on the aging time of the alginate network. Lifetimes measurements indicate that the deactivation paths of the excited state of the IbM6 in the nanoaggregates are reduced when compared with those exhibited by the peptide in aqueous solution, and are also dependent on the aging time of the nanosized alginate network. Finally, the entrapment of IbM6 in NAPs hinders the degradation of the peptide by trypsin, increasing its antimicrobial activity against Escherichia coli K-12 in simulated operation conditions.</p>\",\"PeriodicalId\":98,\"journal\":{\"name\":\"Photochemical & Photobiological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photochemical & Photobiological Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s43630-024-00542-5\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00542-5","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过单锅无溶剂合成过程获得了海藻酸盐基纳米粒子(NAPs),从而设计出一种生物相容性纳米载体,用于包封 IbM6 抗菌肽(IbM6)。在静电相互作用和软物质典型的弱相互作用的引导下,IbM6 被整合到新生的纳米级水凝胶自组装中。纳米凝胶的形成是一个动态而复杂的过程,呈现出有趣的时间演变。在这项工作中,我们根据小角 X 射线散射(SAXS)测量结果优化了 IbM6-NAPs 的合成条件,并通过光化学实验感知 IbM6-NAPs 中的 IbM6 环境,评估了其在数周内的时间演变。荧光失活实验表明,不同淬灭剂对嵌入 NAPs 中的 IbM6 肽的可及性取决于藻酸盐网络的老化时间。寿命测量结果表明,与水溶液中的肽相比,纳米聚集体中 IbM6 激发态的失活路径更短,而且还取决于纳米藻酸盐网络的老化时间。最后,IbM6 在纳米聚合体中的固着阻碍了胰蛋白酶对该肽的降解,从而提高了它在模拟操作条件下对大肠杆菌 K-12 的抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-pot synthesis of alginate-antimicrobial peptide nanogel.

Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution. In this work, we optimized the synthesis conditions of IbM6-NAPs based on small-angle X-ray scattering (SAXS) measurements and evaluated its time evolution over several weeks by sensing the IbM6 environment in IbM6-NAPs from photochemical experiments. Fluorescence deactivation experiments revealed that the accessibility of different quenchers to the IbM6 peptide embedded in NAPs is dependent on the aging time of the alginate network. Lifetimes measurements indicate that the deactivation paths of the excited state of the IbM6 in the nanoaggregates are reduced when compared with those exhibited by the peptide in aqueous solution, and are also dependent on the aging time of the nanosized alginate network. Finally, the entrapment of IbM6 in NAPs hinders the degradation of the peptide by trypsin, increasing its antimicrobial activity against Escherichia coli K-12 in simulated operation conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
期刊最新文献
Protective effect and mechanism of lycium barbarum polysaccharide against UVB-induced skin photoaging. Photoisomerization of two 2-hydroxy-5-arylazobenzaldehydes in solvents of different polarities. Examining the combined benefits of photobiomodulation and apigenin for the treatment of asthenozoospermia: An innovative therapeutic strategy. Publisher Correction: Design and synthesis of a 2,5-Diarylthiophene chromophore for enhanced near-infrared two-photon uncaging efficiency of calcium ions. A novel fluorescent probe for viscosity and polarity detection in real tobacco root cells and biological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1