利用自我监督转移学习对小儿低级别胶质瘤进行无创分子亚型分析

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Radiology-Artificial Intelligence Pub Date : 2024-05-01 DOI:10.1148/ryai.230333
Divyanshu Tak, Zezhong Ye, Anna Zapaischykova, Yining Zha, Aidan Boyd, Sridhar Vajapeyam, Rishi Chopra, Hasaan Hayat, Sanjay P Prabhu, Kevin X Liu, Hesham Elhalawani, Ali Nabavizadeh, Ariana Familiar, Adam C Resnick, Sabine Mueller, Hugo J W L Aerts, Pratiti Bandopadhayay, Keith L Ligon, Daphne A Haas-Kogan, Tina Y Poussaint, Benjamin H Kann
{"title":"利用自我监督转移学习对小儿低级别胶质瘤进行无创分子亚型分析","authors":"Divyanshu Tak, Zezhong Ye, Anna Zapaischykova, Yining Zha, Aidan Boyd, Sridhar Vajapeyam, Rishi Chopra, Hasaan Hayat, Sanjay P Prabhu, Kevin X Liu, Hesham Elhalawani, Ali Nabavizadeh, Ariana Familiar, Adam C Resnick, Sabine Mueller, Hugo J W L Aerts, Pratiti Bandopadhayay, Keith L Ligon, Daphne A Haas-Kogan, Tina Y Poussaint, Benjamin H Kann","doi":"10.1148/ryai.230333","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based <i>BRAF</i> mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, <i>n</i> = 214 [113 (52.8%) male; 104 (48.6%) <i>BRAF</i> wild type, 60 (28.0%) <i>BRAF</i> fusion, and 50 (23.4%) <i>BRAF</i> V600E]) and the Children's Brain Tumor Network (external testing, <i>n</i> = 112 [55 (49.1%) male; 35 (31.2%) <i>BRAF</i> wild type, 60 (53.6%) <i>BRAF</i> fusion, and 17 (15.2%) <i>BRAF</i> V600E]). A deep learning pipeline was developed to classify <i>BRAF</i> mutational status (<i>BRAF</i> wild type vs <i>BRAF</i> fusion vs <i>BRAF</i> V600E) via a two-stage process: <i>(a)</i> three-dimensional tumor segmentation and extraction of axial tumor images and <i>(b)</i> section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for <i>BRAF</i> wild type, <i>BRAF</i> fusion, and <i>BRAF</i> V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for <i>BRAF</i> wild type, <i>BRAF</i> fusion, and <i>BRAF</i> V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. <b>Keywords:</b> Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140508/pdf/","citationCount":"0","resultStr":"{\"title\":\"Noninvasive Molecular Subtyping of Pediatric Low-Grade Glioma with Self-Supervised Transfer Learning.\",\"authors\":\"Divyanshu Tak, Zezhong Ye, Anna Zapaischykova, Yining Zha, Aidan Boyd, Sridhar Vajapeyam, Rishi Chopra, Hasaan Hayat, Sanjay P Prabhu, Kevin X Liu, Hesham Elhalawani, Ali Nabavizadeh, Ariana Familiar, Adam C Resnick, Sabine Mueller, Hugo J W L Aerts, Pratiti Bandopadhayay, Keith L Ligon, Daphne A Haas-Kogan, Tina Y Poussaint, Benjamin H Kann\",\"doi\":\"10.1148/ryai.230333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based <i>BRAF</i> mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, <i>n</i> = 214 [113 (52.8%) male; 104 (48.6%) <i>BRAF</i> wild type, 60 (28.0%) <i>BRAF</i> fusion, and 50 (23.4%) <i>BRAF</i> V600E]) and the Children's Brain Tumor Network (external testing, <i>n</i> = 112 [55 (49.1%) male; 35 (31.2%) <i>BRAF</i> wild type, 60 (53.6%) <i>BRAF</i> fusion, and 17 (15.2%) <i>BRAF</i> V600E]). A deep learning pipeline was developed to classify <i>BRAF</i> mutational status (<i>BRAF</i> wild type vs <i>BRAF</i> fusion vs <i>BRAF</i> V600E) via a two-stage process: <i>(a)</i> three-dimensional tumor segmentation and extraction of axial tumor images and <i>(b)</i> section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for <i>BRAF</i> wild type, <i>BRAF</i> fusion, and <i>BRAF</i> V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for <i>BRAF</i> wild type, <i>BRAF</i> fusion, and <i>BRAF</i> V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. <b>Keywords:</b> Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140508/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.230333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现影响内容的错误。目的 为基于 MRI 的小儿低级别胶质瘤(pLGG)无创 BRAF 突变状态分类开发一种扫描到预测的深度学习管道,并对其进行外部测试。材料与方法 这项回顾性研究包括两个 pLGG 数据集,其中包含患者的基因组和诊断 T2 加权 MRI 数据:BCH(开发数据集,n = 214 [60 (28%) BRAF-Fusion, 50 (23%) BRAF V600E, 104 (49%) 野生型])和儿童脑肿瘤网络(外部测试,n = 112 [60 (53%) BRAF-Fusion, 17 (15%) BRAF-V600E, 35 (32%) 野生型])。我们开发了一个深度学习管道,通过两个阶段对 BRAF 突变状态(V600E 与融合型与野生型)进行分类:1)轴向肿瘤图像的三维肿瘤分割和提取;2)基于深度学习的突变状态切片分类。我们研究了知识转移和自我监督方法,以防止模型过拟合,主要终点是接收者操作特征曲线下面积(AUC)。为了提高模型的可解释性,我们开发了一种新的指标--COMDist(质量中心距离),用于量化肿瘤周围的模型关注度。结果 在内部测试中,来自预训练医学影像特定网络的迁移学习和自监督标签交叉训练(TransferX)与共识逻辑相结合产生了最高的分类性能,对于野生型、BRAF-融合型和BRAF-V600E的AUC分别为0.82[95% CI:0.72-0.91]、0.87[95% CI:0.61-0.97]和0.85[95% CI:0.66-0.95]。在外部测试中,野生型、BRAF-融合型和 BRAF-V600E 类别的 AUC 分别为 0.72 [95% CI: 0.64-0.86]、0.78 [95% CI: 0.61-0.89] 和 0.72 [95% CI: 0.64-0.88]。结论 在数据有限的情况下,迁移学习和自我监督交叉训练提高了无创 pLGG 突变状态预测的分类性能和普适性。©RSNA, 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noninvasive Molecular Subtyping of Pediatric Low-Grade Glioma with Self-Supervised Transfer Learning.

Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, n = 214 [113 (52.8%) male; 104 (48.6%) BRAF wild type, 60 (28.0%) BRAF fusion, and 50 (23.4%) BRAF V600E]) and the Children's Brain Tumor Network (external testing, n = 112 [55 (49.1%) male; 35 (31.2%) BRAF wild type, 60 (53.6%) BRAF fusion, and 17 (15.2%) BRAF V600E]). A deep learning pipeline was developed to classify BRAF mutational status (BRAF wild type vs BRAF fusion vs BRAF V600E) via a two-stage process: (a) three-dimensional tumor segmentation and extraction of axial tumor images and (b) section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. Keywords: Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2024.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
期刊最新文献
AI-integrated Screening to Replace Double Reading of Mammograms: A Population-wide Accuracy and Feasibility Study. Deep Learning Segmentation of Ascites on Abdominal CT Scans for Automatic Volume Quantification. Presurgical Upgrade Prediction of DCIS to Invasive Ductal Carcinoma Using Time-dependent Deep Learning Models with DCE MRI. Artificial Intelligence Outcome Prediction in Neonates with Encephalopathy (AI-OPiNE). Deep Learning to Detect Intracranial Hemorrhage in a National Teleradiology Program and the Impact on Interpretation Time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1