{"title":"用于颅内出血检测和分割的半监督学习。","authors":"Emily Lin, Esther L Yuh","doi":"10.1148/ryai.230077","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To develop and evaluate a semi-supervised learning model for intracranial hemorrhage detection and segmentation on an out-of-distribution head CT evaluation set. Materials and Methods This retrospective study used semi-supervised learning to bootstrap performance. An initial \"teacher\" deep learning model was trained on 457 pixel-labeled head CT scans collected from one U.S. institution from 2010 to 2017 and used to generate pseudo labels on a separate unlabeled corpus of 25 000 examinations from the Radiological Society of North America and American Society of Neuroradiology. A second \"student\" model was trained on this combined pixel- and pseudo-labeled dataset. Hyperparameter tuning was performed on a validation set of 93 scans. Testing for both classification (<i>n</i> = 481 examinations) and segmentation (<i>n</i> = 23 examinations, or 529 images) was performed on CQ500, a dataset of 481 scans performed in India, to evaluate out-of-distribution generalizability. The semi-supervised model was compared with a baseline model trained on only labeled data using area under the receiver operating characteristic curve, Dice similarity coefficient, and average precision metrics. Results The semi-supervised model achieved a statistically significant higher examination area under the receiver operating characteristic curve on CQ500 compared with the baseline (0.939 [95% CI: 0.938, 0.940] vs 0.907 [95% CI: 0.906, 0.908]; <i>P</i> = .009). It also achieved a higher Dice similarity coefficient (0.829 [95% CI: 0.825, 0.833] vs 0.809 [95% CI: 0.803, 0.812]; <i>P</i> = .012) and pixel average precision (0.848 [95% CI: 0.843, 0.853]) vs 0.828 [95% CI: 0.817, 0.828]) compared with the baseline. Conclusion The addition of unlabeled data in a semi-supervised learning framework demonstrates stronger generalizability potential for intracranial hemorrhage detection and segmentation compared with a supervised baseline. <b>Keywords:</b> Semi-supervised Learning, Traumatic Brain Injury, CT, Machine Learning <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also the commentary by Swimburne in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140498/pdf/","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised Learning for Generalizable Intracranial Hemorrhage Detection and Segmentation.\",\"authors\":\"Emily Lin, Esther L Yuh\",\"doi\":\"10.1148/ryai.230077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purpose To develop and evaluate a semi-supervised learning model for intracranial hemorrhage detection and segmentation on an out-of-distribution head CT evaluation set. Materials and Methods This retrospective study used semi-supervised learning to bootstrap performance. An initial \\\"teacher\\\" deep learning model was trained on 457 pixel-labeled head CT scans collected from one U.S. institution from 2010 to 2017 and used to generate pseudo labels on a separate unlabeled corpus of 25 000 examinations from the Radiological Society of North America and American Society of Neuroradiology. A second \\\"student\\\" model was trained on this combined pixel- and pseudo-labeled dataset. Hyperparameter tuning was performed on a validation set of 93 scans. Testing for both classification (<i>n</i> = 481 examinations) and segmentation (<i>n</i> = 23 examinations, or 529 images) was performed on CQ500, a dataset of 481 scans performed in India, to evaluate out-of-distribution generalizability. The semi-supervised model was compared with a baseline model trained on only labeled data using area under the receiver operating characteristic curve, Dice similarity coefficient, and average precision metrics. Results The semi-supervised model achieved a statistically significant higher examination area under the receiver operating characteristic curve on CQ500 compared with the baseline (0.939 [95% CI: 0.938, 0.940] vs 0.907 [95% CI: 0.906, 0.908]; <i>P</i> = .009). It also achieved a higher Dice similarity coefficient (0.829 [95% CI: 0.825, 0.833] vs 0.809 [95% CI: 0.803, 0.812]; <i>P</i> = .012) and pixel average precision (0.848 [95% CI: 0.843, 0.853]) vs 0.828 [95% CI: 0.817, 0.828]) compared with the baseline. Conclusion The addition of unlabeled data in a semi-supervised learning framework demonstrates stronger generalizability potential for intracranial hemorrhage detection and segmentation compared with a supervised baseline. <b>Keywords:</b> Semi-supervised Learning, Traumatic Brain Injury, CT, Machine Learning <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also the commentary by Swimburne in this issue.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140498/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.230077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Semi-supervised Learning for Generalizable Intracranial Hemorrhage Detection and Segmentation.
Purpose To develop and evaluate a semi-supervised learning model for intracranial hemorrhage detection and segmentation on an out-of-distribution head CT evaluation set. Materials and Methods This retrospective study used semi-supervised learning to bootstrap performance. An initial "teacher" deep learning model was trained on 457 pixel-labeled head CT scans collected from one U.S. institution from 2010 to 2017 and used to generate pseudo labels on a separate unlabeled corpus of 25 000 examinations from the Radiological Society of North America and American Society of Neuroradiology. A second "student" model was trained on this combined pixel- and pseudo-labeled dataset. Hyperparameter tuning was performed on a validation set of 93 scans. Testing for both classification (n = 481 examinations) and segmentation (n = 23 examinations, or 529 images) was performed on CQ500, a dataset of 481 scans performed in India, to evaluate out-of-distribution generalizability. The semi-supervised model was compared with a baseline model trained on only labeled data using area under the receiver operating characteristic curve, Dice similarity coefficient, and average precision metrics. Results The semi-supervised model achieved a statistically significant higher examination area under the receiver operating characteristic curve on CQ500 compared with the baseline (0.939 [95% CI: 0.938, 0.940] vs 0.907 [95% CI: 0.906, 0.908]; P = .009). It also achieved a higher Dice similarity coefficient (0.829 [95% CI: 0.825, 0.833] vs 0.809 [95% CI: 0.803, 0.812]; P = .012) and pixel average precision (0.848 [95% CI: 0.843, 0.853]) vs 0.828 [95% CI: 0.817, 0.828]) compared with the baseline. Conclusion The addition of unlabeled data in a semi-supervised learning framework demonstrates stronger generalizability potential for intracranial hemorrhage detection and segmentation compared with a supervised baseline. Keywords: Semi-supervised Learning, Traumatic Brain Injury, CT, Machine Learning Supplemental material is available for this article. Published under a CC BY 4.0 license. See also the commentary by Swimburne in this issue.
期刊介绍:
Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.