{"title":"人工智能在寄生虫病控制中的应用:医疗保健模式的转变。","authors":"Subhash Chandra Parija, Abhijit Poddar","doi":"10.4103/tp.tp_66_23","DOIUrl":null,"url":null,"abstract":"<p><p>Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control approaches and necessitated exploring innovative strategies. In this direction, artificial intelligence (AI) has emerged as a transformative tool with immense promise in parasitic disease control, offering the potential for enhanced diagnostics, precision drug discovery, predictive modeling, and personalized treatment. Predictive AI algorithms have assisted in understanding parasite transmission patterns and outbreaks by analyzing vast amounts of epidemiological data, environmental factors, and population demographics. This has strengthened public health interventions, resource allocation, and outbreak preparedness strategies, enabling proactive measures to mitigate disease spread. In diagnostics, AI-enabled accurate and rapid identification of parasites by analyzing microscopic images. This capability is particularly valuable in remote regions with limited access to diagnostic facilities. AI-driven computational methods have also assisted in drug discovery for parasitic diseases by identifying novel drug targets and predicting the efficacy and safety of potential drug candidates. This approach has streamlined drug development, leading to more effective and targeted therapies. This article reviews these current developments and their transformative impacts on the health-care sector. It also assessed the hurdles that require attention before these transformations can be realized in real-life scenarios.</p>","PeriodicalId":37825,"journal":{"name":"Tropical Parasitology","volume":"14 1","pages":"2-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911181/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in parasitic disease control: A paradigm shift in health care.\",\"authors\":\"Subhash Chandra Parija, Abhijit Poddar\",\"doi\":\"10.4103/tp.tp_66_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control approaches and necessitated exploring innovative strategies. In this direction, artificial intelligence (AI) has emerged as a transformative tool with immense promise in parasitic disease control, offering the potential for enhanced diagnostics, precision drug discovery, predictive modeling, and personalized treatment. Predictive AI algorithms have assisted in understanding parasite transmission patterns and outbreaks by analyzing vast amounts of epidemiological data, environmental factors, and population demographics. This has strengthened public health interventions, resource allocation, and outbreak preparedness strategies, enabling proactive measures to mitigate disease spread. In diagnostics, AI-enabled accurate and rapid identification of parasites by analyzing microscopic images. This capability is particularly valuable in remote regions with limited access to diagnostic facilities. AI-driven computational methods have also assisted in drug discovery for parasitic diseases by identifying novel drug targets and predicting the efficacy and safety of potential drug candidates. This approach has streamlined drug development, leading to more effective and targeted therapies. This article reviews these current developments and their transformative impacts on the health-care sector. It also assessed the hurdles that require attention before these transformations can be realized in real-life scenarios.</p>\",\"PeriodicalId\":37825,\"journal\":{\"name\":\"Tropical Parasitology\",\"volume\":\"14 1\",\"pages\":\"2-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911181/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Parasitology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/tp.tp_66_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Parasitology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/tp.tp_66_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Artificial intelligence in parasitic disease control: A paradigm shift in health care.
Parasitic diseases, including malaria, leishmaniasis, and trypanosomiasis, continue to plague populations worldwide, particularly in resource-limited settings and disproportionately affecting vulnerable populations. It has limited the use of conventional health-care delivery and disease control approaches and necessitated exploring innovative strategies. In this direction, artificial intelligence (AI) has emerged as a transformative tool with immense promise in parasitic disease control, offering the potential for enhanced diagnostics, precision drug discovery, predictive modeling, and personalized treatment. Predictive AI algorithms have assisted in understanding parasite transmission patterns and outbreaks by analyzing vast amounts of epidemiological data, environmental factors, and population demographics. This has strengthened public health interventions, resource allocation, and outbreak preparedness strategies, enabling proactive measures to mitigate disease spread. In diagnostics, AI-enabled accurate and rapid identification of parasites by analyzing microscopic images. This capability is particularly valuable in remote regions with limited access to diagnostic facilities. AI-driven computational methods have also assisted in drug discovery for parasitic diseases by identifying novel drug targets and predicting the efficacy and safety of potential drug candidates. This approach has streamlined drug development, leading to more effective and targeted therapies. This article reviews these current developments and their transformative impacts on the health-care sector. It also assessed the hurdles that require attention before these transformations can be realized in real-life scenarios.
期刊介绍:
Tropical Parasitology, a publication of Indian Academy of Tropical Parasitology, is a peer-reviewed online journal with Semiannual print on demand compilation of issues published. The journal’s full text is available online at www.tropicalparasitology.org. The journal allows free access (Open Access) to its contents and permits authors to self-archive final accepted version of the articles on any OAI-compliant institutional / subject-based repository. The journal will cover technical and clinical studies related to health, ethical and social issues in field of parasitology. Articles with clinical interest and implications will be given preference.