不同浓度的纳米银粒子对草莓果实的生长、产量和质量的影响

IF 2.6 3区 农林科学 Q1 AGRONOMY Journal of Plant Nutrition and Soil Science Pub Date : 2024-03-04 DOI:10.1002/jpln.202300284
Umbreen Shahzad, Muhammad Saqib, Hafiz Muhammad Jhanzab, Sami Abou Fayssal, Riaz Ahmad, Abdul Qayyum
{"title":"不同浓度的纳米银粒子对草莓果实的生长、产量和质量的影响","authors":"Umbreen Shahzad,&nbsp;Muhammad Saqib,&nbsp;Hafiz Muhammad Jhanzab,&nbsp;Sami Abou Fayssal,&nbsp;Riaz Ahmad,&nbsp;Abdul Qayyum","doi":"10.1002/jpln.202300284","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>The application of nanoparticles (NPs) in horticultural crops is in a tremendous increase. NPs help in the overcoming of stresses with positive impacts on plant growth and development. Silver NPs (AgNPs) have numerous pre- and postharvest applications in agriculture.</p>\n </section>\n \n <section>\n \n <h3> Aims and methods</h3>\n \n <p>This study aimed to evaluate the effect of AgNPs application (0, 50, 100, 150, and 200 ppm) at three spray intervals (5, 10, and 15 days) on the morphological and compositional traits, and defense system of strawberry.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Results showed that AgNPs application enhanced the growth, yield, quality, and nutritional aspects of strawberry grown under field conditions. Shoot fresh weight (20.20 g) and leaf number/plant (41.53) were enhanced at 100 ppm AgNPs and 15 days interval. A stunted growth of strawberry plants was recorded at 200 ppm AgNPs. Moreover, a 15-day-spray interval was found optimum for the improvement of major morphological traits. Fruit size, yield, total soluble solids, acidity, and antioxidant capacity were improved at 50 and 100 ppm AgNPs. The activation of plant defense system, that is, superoxide dismutase, peroxidase, catalase, total soluble protein, and ascorbic acid was improved under AgNPs foliar application. The activation of stress indicating marker malondialdehyde outlined a high defense response of strawberry at 150 ppm AgNPs.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Conclusively, AgNPs application at 50, 100, and 150 ppm can be considered effective for sustainable strawberry production.</p>\n </section>\n </div>","PeriodicalId":16802,"journal":{"name":"Journal of Plant Nutrition and Soil Science","volume":"187 5","pages":"668-677"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different concentrations of silver nanoparticles trigger growth, yield, and quality of strawberry (Fragaria ananassa L.) fruits\",\"authors\":\"Umbreen Shahzad,&nbsp;Muhammad Saqib,&nbsp;Hafiz Muhammad Jhanzab,&nbsp;Sami Abou Fayssal,&nbsp;Riaz Ahmad,&nbsp;Abdul Qayyum\",\"doi\":\"10.1002/jpln.202300284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>The application of nanoparticles (NPs) in horticultural crops is in a tremendous increase. NPs help in the overcoming of stresses with positive impacts on plant growth and development. Silver NPs (AgNPs) have numerous pre- and postharvest applications in agriculture.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Aims and methods</h3>\\n \\n <p>This study aimed to evaluate the effect of AgNPs application (0, 50, 100, 150, and 200 ppm) at three spray intervals (5, 10, and 15 days) on the morphological and compositional traits, and defense system of strawberry.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Results showed that AgNPs application enhanced the growth, yield, quality, and nutritional aspects of strawberry grown under field conditions. Shoot fresh weight (20.20 g) and leaf number/plant (41.53) were enhanced at 100 ppm AgNPs and 15 days interval. A stunted growth of strawberry plants was recorded at 200 ppm AgNPs. Moreover, a 15-day-spray interval was found optimum for the improvement of major morphological traits. Fruit size, yield, total soluble solids, acidity, and antioxidant capacity were improved at 50 and 100 ppm AgNPs. The activation of plant defense system, that is, superoxide dismutase, peroxidase, catalase, total soluble protein, and ascorbic acid was improved under AgNPs foliar application. The activation of stress indicating marker malondialdehyde outlined a high defense response of strawberry at 150 ppm AgNPs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Conclusively, AgNPs application at 50, 100, and 150 ppm can be considered effective for sustainable strawberry production.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16802,\"journal\":{\"name\":\"Journal of Plant Nutrition and Soil Science\",\"volume\":\"187 5\",\"pages\":\"668-677\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Nutrition and Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jpln.202300284\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Nutrition and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jpln.202300284","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

纳米粒子(NPs)在园艺作物中的应用正急剧增加。纳米粒子有助于克服压力,对植物的生长和发育产生积极影响。银纳米粒子(AgNPs)在农业收获前和收获后都有大量应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Different concentrations of silver nanoparticles trigger growth, yield, and quality of strawberry (Fragaria ananassa L.) fruits

Background

The application of nanoparticles (NPs) in horticultural crops is in a tremendous increase. NPs help in the overcoming of stresses with positive impacts on plant growth and development. Silver NPs (AgNPs) have numerous pre- and postharvest applications in agriculture.

Aims and methods

This study aimed to evaluate the effect of AgNPs application (0, 50, 100, 150, and 200 ppm) at three spray intervals (5, 10, and 15 days) on the morphological and compositional traits, and defense system of strawberry.

Results

Results showed that AgNPs application enhanced the growth, yield, quality, and nutritional aspects of strawberry grown under field conditions. Shoot fresh weight (20.20 g) and leaf number/plant (41.53) were enhanced at 100 ppm AgNPs and 15 days interval. A stunted growth of strawberry plants was recorded at 200 ppm AgNPs. Moreover, a 15-day-spray interval was found optimum for the improvement of major morphological traits. Fruit size, yield, total soluble solids, acidity, and antioxidant capacity were improved at 50 and 100 ppm AgNPs. The activation of plant defense system, that is, superoxide dismutase, peroxidase, catalase, total soluble protein, and ascorbic acid was improved under AgNPs foliar application. The activation of stress indicating marker malondialdehyde outlined a high defense response of strawberry at 150 ppm AgNPs.

Conclusions

Conclusively, AgNPs application at 50, 100, and 150 ppm can be considered effective for sustainable strawberry production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
8.00%
发文量
90
审稿时长
8-16 weeks
期刊介绍: Established in 1922, the Journal of Plant Nutrition and Soil Science (JPNSS) is an international peer-reviewed journal devoted to cover the entire spectrum of plant nutrition and soil science from different scale units, e.g. agroecosystem to natural systems. With its wide scope and focus on soil-plant interactions, JPNSS is one of the leading journals on this topic. Articles in JPNSS include reviews, high-standard original papers, and short communications and represent challenging research of international significance. The Journal of Plant Nutrition and Soil Science is one of the world’s oldest journals. You can trust in a peer-reviewed journal that has been established in the plant and soil science community for almost 100 years. Journal of Plant Nutrition and Soil Science (ISSN 1436-8730) is published in six volumes per year, by the German Societies of Plant Nutrition (DGP) and Soil Science (DBG). Furthermore, the Journal of Plant Nutrition and Soil Science (JPNSS) is a Cooperating Journal of the International Union of Soil Science (IUSS). The journal is produced by Wiley-VCH. Topical Divisions of the Journal of Plant Nutrition and Soil Science that are receiving increasing attention are: JPNSS – Topical Divisions Special timely focus in interdisciplinarity: - sustainability & critical zone science. Soil-Plant Interactions: - rhizosphere science & soil ecology - pollutant cycling & plant-soil protection - land use & climate change. Soil Science: - soil chemistry & soil physics - soil biology & biogeochemistry - soil genesis & mineralogy. Plant Nutrition: - plant nutritional physiology - nutrient dynamics & soil fertility - ecophysiological aspects of plant nutrition.
期刊最新文献
Editorial Board: J. Plant Nutr. Soil Sci. 5/2024 Impressum: J. Plant Nutr. Soil Sci. 5/2024 Contents: J. Plant Nutr. Soil Sci. 5/2024 Cover Picture: J. Plant Nutr. Soil Sci. 5/2024 Fe toxicity tolerance is advantageous in rice growth recovery after Fe stress alleviation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1