生物炭影响波特兰水泥复合材料的抗压强度:一项荟萃分析

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Biochar Pub Date : 2024-03-06 DOI:10.1007/s42773-024-00309-2
Zhihao Zhao, Ali El-Naggar, Johnson Kau, Chris Olson, Douglas Tomlinson, Scott X. Chang
{"title":"生物炭影响波特兰水泥复合材料的抗压强度:一项荟萃分析","authors":"Zhihao Zhao, Ali El-Naggar, Johnson Kau, Chris Olson, Douglas Tomlinson, Scott X. Chang","doi":"10.1007/s42773-024-00309-2","DOIUrl":null,"url":null,"abstract":"<p>One strategy to reduce CO<sub>2</sub> emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood. This meta-analysis investigated the impact of biochar addition on the 7- and 28-day compressive strength of Portland cement composites based on 606 paired observations. Biochar feedstock type, pyrolysis conditions, pre-treatments and modifications, biochar dosage, and curing type all influenced the compressive strength of Portland cement composites. Biochars obtained from plant-based feedstocks (except rice and hardwood) improved the 28-day compressive strength of Portland cement composites by 3–13%. Biochars produced at pyrolysis temperatures higher than 450 °C, with a heating rate of around 10 C min<sup>-1</sup>, increased the 28-day compressive strength more effectively. Furthermore, the addition of biochar with small particle sizes increased the compressive strength of Portland cement composites by 2–7% compared to those without biochar addition. Biochar dosage of &lt; 2.5% of the binder weight enhanced both compressive strengths, and common curing methods maintained the effect of biochar addition. However, when mixing the cement, adding fine and coarse aggregates such as sand and gravel affects the concrete and mortar's compressive strength, diminishing the effect of biochar addition and making the biochar effect nonsignificant. We concluded that appropriate biochar addition could maintain or enhance the mechanical performance of Portland cement composites, and future research should explore the mechanisms of biochar effects on the performance of cement composites.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"18 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biochar affects compressive strength of Portland cement composites: a meta-analysis\",\"authors\":\"Zhihao Zhao, Ali El-Naggar, Johnson Kau, Chris Olson, Douglas Tomlinson, Scott X. Chang\",\"doi\":\"10.1007/s42773-024-00309-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One strategy to reduce CO<sub>2</sub> emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood. This meta-analysis investigated the impact of biochar addition on the 7- and 28-day compressive strength of Portland cement composites based on 606 paired observations. Biochar feedstock type, pyrolysis conditions, pre-treatments and modifications, biochar dosage, and curing type all influenced the compressive strength of Portland cement composites. Biochars obtained from plant-based feedstocks (except rice and hardwood) improved the 28-day compressive strength of Portland cement composites by 3–13%. Biochars produced at pyrolysis temperatures higher than 450 °C, with a heating rate of around 10 C min<sup>-1</sup>, increased the 28-day compressive strength more effectively. Furthermore, the addition of biochar with small particle sizes increased the compressive strength of Portland cement composites by 2–7% compared to those without biochar addition. Biochar dosage of &lt; 2.5% of the binder weight enhanced both compressive strengths, and common curing methods maintained the effect of biochar addition. However, when mixing the cement, adding fine and coarse aggregates such as sand and gravel affects the concrete and mortar's compressive strength, diminishing the effect of biochar addition and making the biochar effect nonsignificant. We concluded that appropriate biochar addition could maintain or enhance the mechanical performance of Portland cement composites, and future research should explore the mechanisms of biochar effects on the performance of cement composites.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00309-2\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00309-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

减少水泥生产过程中二氧化碳排放量的策略之一是用胶凝补充材料(SCM)替代硅酸盐水泥,从而减少硅酸盐水泥的生产量。生物炭是一种潜在的 SCM,它是一种环保、稳定的多孔热解材料。然而,人们对生物炭的添加对波特兰水泥复合材料性能的影响还不完全了解。本荟萃分析基于 606 项配对观察结果,研究了生物炭添加量对波特兰水泥复合材料 7 天和 28 天抗压强度的影响。生物炭原料类型、热解条件、预处理和改性、生物炭用量和固化类型都会影响波特兰水泥复合材料的抗压强度。从植物原料(大米和硬木除外)中获得的生物炭可将波特兰水泥复合材料的 28 天抗压强度提高 3-13%。生物炭的热解温度高于 450°C,加热速度约为 10°C min-1,能更有效地提高 28 天抗压强度。此外,与未添加生物炭的硅酸盐水泥复合材料相比,添加小粒径生物炭可将其抗压强度提高 2-7%。占粘结剂重量 2.5% 的生物炭用量可提高两种抗压强度,而普通的固化方法可保持生物炭添加的效果。然而,在搅拌水泥时,加入砂和砾石等细骨料和粗骨料会影响混凝土和砂浆的抗压强度,削弱生物炭的添加效果,使生物炭效果不显著。我们的结论是,适当添加生物炭可以保持或提高波特兰水泥复合材料的力学性能,未来的研究应探索生物炭对水泥复合材料性能的影响机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biochar affects compressive strength of Portland cement composites: a meta-analysis

One strategy to reduce CO2 emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood. This meta-analysis investigated the impact of biochar addition on the 7- and 28-day compressive strength of Portland cement composites based on 606 paired observations. Biochar feedstock type, pyrolysis conditions, pre-treatments and modifications, biochar dosage, and curing type all influenced the compressive strength of Portland cement composites. Biochars obtained from plant-based feedstocks (except rice and hardwood) improved the 28-day compressive strength of Portland cement composites by 3–13%. Biochars produced at pyrolysis temperatures higher than 450 °C, with a heating rate of around 10 C min-1, increased the 28-day compressive strength more effectively. Furthermore, the addition of biochar with small particle sizes increased the compressive strength of Portland cement composites by 2–7% compared to those without biochar addition. Biochar dosage of < 2.5% of the binder weight enhanced both compressive strengths, and common curing methods maintained the effect of biochar addition. However, when mixing the cement, adding fine and coarse aggregates such as sand and gravel affects the concrete and mortar's compressive strength, diminishing the effect of biochar addition and making the biochar effect nonsignificant. We concluded that appropriate biochar addition could maintain or enhance the mechanical performance of Portland cement composites, and future research should explore the mechanisms of biochar effects on the performance of cement composites.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
期刊最新文献
Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: a bibliometrics study for 2022 and 2023 Oyster shell facilitates the green production of nitrogen-doped porous biochar from macroalgae: a case study for removing atrazine from water Novel utilization exploration for the dephosphorization waste of Ca–modified biochar: enhanced removal of heavy metal ions from water Plant performance and soil–plant carbon relationship response to different biochar types A critical review of hydrochar based photocatalysts by hydrothermal carbonization: synthesis, mechanisms, and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1