{"title":"利用深度学习为超高维和高相关特征空间选择错误可控的特征","authors":"Arkaprabha Ganguli, Tapabrata Maiti, David Todem","doi":"10.1002/sam.11664","DOIUrl":null,"url":null,"abstract":"Deep learning has been at the center of analytics in recent years due to its impressive empirical success in analyzing complex data objects. Despite this success, most existing tools behave like black-box machines, thus the increasing interest in interpretable, reliable, and robust deep learning models applicable to a broad class of applications. Feature-selected deep learning has emerged as a promising tool in this realm. However, the recent developments do not accommodate ultrahigh-dimensional and highly correlated features or high noise levels. In this article, we propose a novel screening and cleaning method with the aid of deep learning for a data-adaptive multi-resolutional discovery of highly correlated predictors with a controlled error rate. Extensive empirical evaluations over a wide range of simulated scenarios and several real datasets demonstrate the effectiveness of the proposed method in achieving high power while keeping the false discovery rate at a minimum.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"272 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error-controlled feature selection for ultrahigh-dimensional and highly correlated feature space using deep learning\",\"authors\":\"Arkaprabha Ganguli, Tapabrata Maiti, David Todem\",\"doi\":\"10.1002/sam.11664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning has been at the center of analytics in recent years due to its impressive empirical success in analyzing complex data objects. Despite this success, most existing tools behave like black-box machines, thus the increasing interest in interpretable, reliable, and robust deep learning models applicable to a broad class of applications. Feature-selected deep learning has emerged as a promising tool in this realm. However, the recent developments do not accommodate ultrahigh-dimensional and highly correlated features or high noise levels. In this article, we propose a novel screening and cleaning method with the aid of deep learning for a data-adaptive multi-resolutional discovery of highly correlated predictors with a controlled error rate. Extensive empirical evaluations over a wide range of simulated scenarios and several real datasets demonstrate the effectiveness of the proposed method in achieving high power while keeping the false discovery rate at a minimum.\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"272 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11664\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11664","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Error-controlled feature selection for ultrahigh-dimensional and highly correlated feature space using deep learning
Deep learning has been at the center of analytics in recent years due to its impressive empirical success in analyzing complex data objects. Despite this success, most existing tools behave like black-box machines, thus the increasing interest in interpretable, reliable, and robust deep learning models applicable to a broad class of applications. Feature-selected deep learning has emerged as a promising tool in this realm. However, the recent developments do not accommodate ultrahigh-dimensional and highly correlated features or high noise levels. In this article, we propose a novel screening and cleaning method with the aid of deep learning for a data-adaptive multi-resolutional discovery of highly correlated predictors with a controlled error rate. Extensive empirical evaluations over a wide range of simulated scenarios and several real datasets demonstrate the effectiveness of the proposed method in achieving high power while keeping the false discovery rate at a minimum.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.