La0.65Ca0.35-xGdxMnO3 (0≤x≤0.15) 的磁致效应和临界行为

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED International Journal of Modern Physics B Pub Date : 2024-02-29 DOI:10.1142/s0217979224504368
Ma Huaijin, Jin Xiang, Gao Lei, Zhao Jing, Xing Ru, Yun Huiqin, Zhao Jianjun
{"title":"La0.65Ca0.35-xGdxMnO3 (0≤x≤0.15) 的磁致效应和临界行为","authors":"Ma Huaijin, Jin Xiang, Gao Lei, Zhao Jing, Xing Ru, Yun Huiqin, Zhao Jianjun","doi":"10.1142/s0217979224504368","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigate the magnetocaloric effects (MCE) and critical behavior of Gd-doped La<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mn>5</mn></mrow></msub></math></span><span></span>Ca<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mn>5</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span><span></span>Gd<sub><i>x</i></sub>MnO<sub>3</sub> (<span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>) polycrystalline materials. Our results reveal excellent MCE in the Gd-doped samples. Under a magnetic field of 7<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>T, the full-width at half maximum (<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">FWHM</mtext></mstyle></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> increases from 41<span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn></math></span><span></span>) to 121<span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span>) and 112<span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>). Additionally, the refrigerant capacity (RC) is enhanced by 149% and 145% at <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>, respectively, compared to the parent phase. We propose that these improvements can be attributed to the introduction of Gd<span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span><span></span> ions, which possess smaller ionic radii. This reduction in the average A-site ionic radius weakens the double exchange (DE) interactions, resulting in a more continuous phase transition within the system. Supporting this view, we observe a decrease in magnetization strength after doping, a reduction in Curie temperature (<span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> from 250<span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn></math></span><span></span>) to 134<span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span>) and 130<span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>K (<span><math altimg=\"eq-00027.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>) and a transformation from a first-order to a second-order phase transition in the doped samples. To characterize the critical behavior of the phase transition in the doped samples, we employ the K-F method. The obtained critical exponents for <span><math altimg=\"eq-00028.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00029.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span> are <span><math altimg=\"eq-00030.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mn>8</mn><mn>0</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>6</mn></math></span><span></span>, <span><math altimg=\"eq-00031.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn><mn>2</mn><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00032.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mn>8</mn><mn>2</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>5</mn></math></span><span></span> and <span><math altimg=\"eq-00033.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mn>7</mn><mn>7</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>8</mn></math></span><span></span>, <span><math altimg=\"eq-00034.gif\" display=\"inline\" overflow=\"scroll\"><mi>γ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mn>8</mn><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>4</mn></math></span><span></span>, <span><math altimg=\"eq-00035.gif\" display=\"inline\" overflow=\"scroll\"><mi>δ</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>2</mn><mn>7</mn><mn>0</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>2</mn></math></span><span></span>, respectively. Furthermore, the calculation of the <i>n</i> values suggests a transition of the phase transition in the doped samples from short-range ordering to long-range ordering.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetocaloric effects and critical behavior of La0.65Ca0.35−xGdxMnO3 (0≤x≤0.15)\",\"authors\":\"Ma Huaijin, Jin Xiang, Gao Lei, Zhao Jing, Xing Ru, Yun Huiqin, Zhao Jianjun\",\"doi\":\"10.1142/s0217979224504368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we investigate the magnetocaloric effects (MCE) and critical behavior of Gd-doped La<span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>6</mn><mn>5</mn></mrow></msub></math></span><span></span>Ca<span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow></mrow><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mn>5</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span><span></span>Gd<sub><i>x</i></sub>MnO<sub>3</sub> (<span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>) polycrystalline materials. Our results reveal excellent MCE in the Gd-doped samples. Under a magnetic field of 7<span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>T, the full-width at half maximum (<span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">FWHM</mtext></mstyle></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> increases from 41<span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn></math></span><span></span>) to 121<span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span>) and 112<span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>). Additionally, the refrigerant capacity (RC) is enhanced by 149% and 145% at <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>, respectively, compared to the parent phase. We propose that these improvements can be attributed to the introduction of Gd<span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span><span></span> ions, which possess smaller ionic radii. This reduction in the average A-site ionic radius weakens the double exchange (DE) interactions, resulting in a more continuous phase transition within the system. Supporting this view, we observe a decrease in magnetization strength after doping, a reduction in Curie temperature (<span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> from 250<span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn></math></span><span></span>) to 134<span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00025.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span>) and 130<span><math altimg=\\\"eq-00026.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>K (<span><math altimg=\\\"eq-00027.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span>) and a transformation from a first-order to a second-order phase transition in the doped samples. To characterize the critical behavior of the phase transition in the doped samples, we employ the K-F method. The obtained critical exponents for <span><math altimg=\\\"eq-00028.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\\\"eq-00029.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn><mn>5</mn></math></span><span></span> are <span><math altimg=\\\"eq-00030.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mn>8</mn><mn>0</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>6</mn></math></span><span></span>, <span><math altimg=\\\"eq-00031.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>3</mn><mn>2</mn><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>3</mn></math></span><span></span>, <span><math altimg=\\\"eq-00032.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>δ</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn><mn>8</mn><mn>2</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>5</mn></math></span><span></span> and <span><math altimg=\\\"eq-00033.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>β</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn><mn>7</mn><mn>7</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>8</mn></math></span><span></span>, <span><math altimg=\\\"eq-00034.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>γ</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn><mn>8</mn><mn>3</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>4</mn></math></span><span></span>, <span><math altimg=\\\"eq-00035.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>δ</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>2</mn><mn>7</mn><mn>0</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>0</mn><mn>0</mn><mn>2</mn></math></span><span></span>, respectively. Furthermore, the calculation of the <i>n</i> values suggests a transition of the phase transition in the doped samples from short-range ordering to long-range ordering.</p>\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979224504368\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979224504368","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们研究了掺钆 La0.65Ca0.35-xGdxMnO3 (x=0,0.10,0.15)多晶材料的磁致效应(MCE)和临界行为。我们的研究结果表明,掺钆样品具有优异的 MCE 性能。在 7T 的磁场下,半最大全宽(ΔTFWHM)从 41K (x=0.00) 增加到 121K (x=0.10) 和 112K (x=0.15)。此外,与母相相比,制冷剂容量(RC)在 x=0.10 和 x=0.15 时分别提高了 149% 和 145%。我们认为,这些改进可归因于引入了具有较小离子半径的 Gd3+ 离子。平均 A 位离子半径的减小削弱了双交换(DE)相互作用,从而使体系内的相变更加连续。为支持这一观点,我们观察到掺杂后磁化强度下降,居里温度(TC)从 250K (x=0.00) 降低到 134K (x=0.10) 和 130K (x=0.15),掺杂样品的相变从一阶转变为二阶。为了描述掺杂样品中相变的临界行为,我们采用了 K-F 方法。在 x=0.10 和 x=0.15 时得到的临界指数分别为 β=0.380±0.006, γ=1.323±0.003, δ=4.482±0.005 和 β=0.477±0.008, γ=1.083±0.004, δ=3.270±0.002。此外,n 值的计算表明,掺杂样品的相变从短程有序过渡到了长程有序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetocaloric effects and critical behavior of La0.65Ca0.35−xGdxMnO3 (0≤x≤0.15)

In this study, we investigate the magnetocaloric effects (MCE) and critical behavior of Gd-doped La0.65Ca0.35xGdxMnO3 (x=0,0.10,0.15) polycrystalline materials. Our results reveal excellent MCE in the Gd-doped samples. Under a magnetic field of 7T, the full-width at half maximum (ΔTFWHM) increases from 41K (x=0.00) to 121K (x=0.10) and 112K (x=0.15). Additionally, the refrigerant capacity (RC) is enhanced by 149% and 145% at x=0.10 and x=0.15, respectively, compared to the parent phase. We propose that these improvements can be attributed to the introduction of Gd3+ ions, which possess smaller ionic radii. This reduction in the average A-site ionic radius weakens the double exchange (DE) interactions, resulting in a more continuous phase transition within the system. Supporting this view, we observe a decrease in magnetization strength after doping, a reduction in Curie temperature (TC) from 250K (x=0.00) to 134K (x=0.10) and 130K (x=0.15) and a transformation from a first-order to a second-order phase transition in the doped samples. To characterize the critical behavior of the phase transition in the doped samples, we employ the K-F method. The obtained critical exponents for x=0.10 and x=0.15 are β=0.380±0.006, γ=1.323±0.003, δ=4.482±0.005 and β=0.477±0.008, γ=1.083±0.004, δ=3.270±0.002, respectively. Furthermore, the calculation of the n values suggests a transition of the phase transition in the doped samples from short-range ordering to long-range ordering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
期刊最新文献
Möbius group actions in the solvable chimera model On the solutions of space-time fractional CBS and CBS-BK equations describing the dynamics of Riemann wave interaction Application of micropolar fluid model to blood flow through catheterized artery with stenosis and thrombosis Electro-fluid-dynamics (EFD) of soft-bodied organisms swimming through mucus having dilatant, viscous, and pseudo-plastic properties Investigating the effect of oxygen vacancy on electronic, optical, thermoelectric and thermodynamic properties of CeO2 (ceria) for energy and ReRAM applications: A first-principles quantum analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1