{"title":"合成治疗肽的对映体纯度:综述。","authors":"Devendra Badgujar, Sree Teja Paritala, Shubham Matre, Nitish Sharma","doi":"10.1002/chir.23652","DOIUrl":null,"url":null,"abstract":"<p>Synthetic therapeutic peptides are a complex and popular class of pharmaceuticals. In recent years, peptides with proven therapeutic activity have gained significant interest in the market. The determination of synthetic peptide enantiomeric purity plays a critical role in the evaluation of the quality of the medicine. Since racemization is one of the most common side reactions occurring in AAs or peptides, enantiomeric impurities such as D-isomers can form during the peptide synthesis or can be introduced from the starting materials (e.g., AAs). The therapeutic effect of a synthetic or semi-synthetic bioactive peptide molecule depends on its AA enantiomeric purity and secondary/tertiary structure. Therefore, the enantiomeric purity determination for synthetic peptides is supportive for interpreting unwanted therapeutic effects and determining the quality of synthetic peptide therapeutics. However, enantiomeric purity analysis encounters formidable analytical challenges during chromatographic separation, as D/L isomers have identical physical–chemical properties except stereochemical configuration. To ensure peptides AA stereochemical configuration whether in the free or bound state, sensitive and reproducible quantitative analytical method is mandatory. In this regard, numerous analytical techniques were emerged for the quantification of D-isomeric impurities in synthetic peptides, but still, very few reports are available in the literature. Thus, the purpose of this paper is to provide an overview of the importance, regulatory requirements, and various analytical methods used for peptide enantiomeric purity determination. In addition, we discussed the available literature in terms of enantiomeric impurity detection, common hydrolysis procedural aspects, and different analytical strategies used for sample preparation.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enantiomeric purity of synthetic therapeutic peptides: A review\",\"authors\":\"Devendra Badgujar, Sree Teja Paritala, Shubham Matre, Nitish Sharma\",\"doi\":\"10.1002/chir.23652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Synthetic therapeutic peptides are a complex and popular class of pharmaceuticals. In recent years, peptides with proven therapeutic activity have gained significant interest in the market. The determination of synthetic peptide enantiomeric purity plays a critical role in the evaluation of the quality of the medicine. Since racemization is one of the most common side reactions occurring in AAs or peptides, enantiomeric impurities such as D-isomers can form during the peptide synthesis or can be introduced from the starting materials (e.g., AAs). The therapeutic effect of a synthetic or semi-synthetic bioactive peptide molecule depends on its AA enantiomeric purity and secondary/tertiary structure. Therefore, the enantiomeric purity determination for synthetic peptides is supportive for interpreting unwanted therapeutic effects and determining the quality of synthetic peptide therapeutics. However, enantiomeric purity analysis encounters formidable analytical challenges during chromatographic separation, as D/L isomers have identical physical–chemical properties except stereochemical configuration. To ensure peptides AA stereochemical configuration whether in the free or bound state, sensitive and reproducible quantitative analytical method is mandatory. In this regard, numerous analytical techniques were emerged for the quantification of D-isomeric impurities in synthetic peptides, but still, very few reports are available in the literature. Thus, the purpose of this paper is to provide an overview of the importance, regulatory requirements, and various analytical methods used for peptide enantiomeric purity determination. In addition, we discussed the available literature in terms of enantiomeric impurity detection, common hydrolysis procedural aspects, and different analytical strategies used for sample preparation.</p>\",\"PeriodicalId\":10170,\"journal\":{\"name\":\"Chirality\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chirality\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/chir.23652\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chirality","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/chir.23652","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
合成治疗肽是一类复杂而流行的药物。近年来,经证实具有治疗活性的多肽在市场上获得了极大的关注。合成肽对映体纯度的测定在药品质量评估中起着至关重要的作用。由于消旋化是 AA 或肽中最常见的副反应之一,对映体杂质(如 D-异构体)可能在肽合成过程中形成,也可能从起始原料(如 AA)中引入。合成或半合成生物活性肽分子的治疗效果取决于其 AA 对映体的纯度和二级/三级结构。因此,合成肽对映体纯度的测定有助于解释不必要的治疗效果和确定合成肽疗法的质量。然而,对映体纯度分析在色谱分离过程中遇到了巨大的分析挑战,因为除了立体化学构型外,D/L 异构体具有完全相同的物理化学特性。为了确保肽在游离或结合状态下都具有 AA 立体化学构型,必须采用灵敏且可重复的定量分析方法。在这方面,出现了许多用于定量合成肽中 D-异构体杂质的分析技术,但文献中的报道仍然很少。因此,本文旨在概述肽对映体纯度测定的重要性、法规要求和各种分析方法。此外,我们还从对映体杂质检测、常见水解程序方面以及用于样品制备的不同分析策略等方面讨论了现有文献。
Enantiomeric purity of synthetic therapeutic peptides: A review
Synthetic therapeutic peptides are a complex and popular class of pharmaceuticals. In recent years, peptides with proven therapeutic activity have gained significant interest in the market. The determination of synthetic peptide enantiomeric purity plays a critical role in the evaluation of the quality of the medicine. Since racemization is one of the most common side reactions occurring in AAs or peptides, enantiomeric impurities such as D-isomers can form during the peptide synthesis or can be introduced from the starting materials (e.g., AAs). The therapeutic effect of a synthetic or semi-synthetic bioactive peptide molecule depends on its AA enantiomeric purity and secondary/tertiary structure. Therefore, the enantiomeric purity determination for synthetic peptides is supportive for interpreting unwanted therapeutic effects and determining the quality of synthetic peptide therapeutics. However, enantiomeric purity analysis encounters formidable analytical challenges during chromatographic separation, as D/L isomers have identical physical–chemical properties except stereochemical configuration. To ensure peptides AA stereochemical configuration whether in the free or bound state, sensitive and reproducible quantitative analytical method is mandatory. In this regard, numerous analytical techniques were emerged for the quantification of D-isomeric impurities in synthetic peptides, but still, very few reports are available in the literature. Thus, the purpose of this paper is to provide an overview of the importance, regulatory requirements, and various analytical methods used for peptide enantiomeric purity determination. In addition, we discussed the available literature in terms of enantiomeric impurity detection, common hydrolysis procedural aspects, and different analytical strategies used for sample preparation.
期刊介绍:
The main aim of the journal is to publish original contributions of scientific work on the role of chirality in chemistry and biochemistry in respect to biological, chemical, materials, pharmacological, spectroscopic and physical properties.
Papers on the chemistry (physiochemical, preparative synthetic, and analytical), physics, pharmacology, clinical pharmacology, toxicology, and other biological aspects of chiral molecules will be published.