Celeste B. Marsan , Sung Gyung Lee , Ankim Nguyen , Angela R. Gordillo Sierra , Sarah M. Coleman , Sierra M. Brooks , Hal S. Alper
{"title":"利用 Y. lipolytica 柚皮苷底盘进行芹菜素及相关苷类的生物合成。","authors":"Celeste B. Marsan , Sung Gyung Lee , Ankim Nguyen , Angela R. Gordillo Sierra , Sarah M. Coleman , Sierra M. Brooks , Hal S. Alper","doi":"10.1016/j.ymben.2024.02.018","DOIUrl":null,"url":null,"abstract":"<div><p>Flavonoids are a diverse set of natural products with promising bioactivities including anti-inflammatory, anti-cancer, and neuroprotective properties. Previously, the oleaginous host <em>Yarrowia lipolytica</em> has been engineered to produce high titers of the base flavonoid naringenin. Here, we leverage this host along with a set of <em>E. coli</em> bioconversion strains to produce the flavone apigenin and its glycosylated derivative isovitexin, two potential nutraceutical and pharmaceutical candidates. Through downstream strain selection, co-culture optimization, media composition, and mutant isolation, we were able to produce168 mg/L of apigenin, representing a 46% conversion rate of 2-(R/S)-naringenin to apigenin. This apigenin platform was modularly extended to produce isovitexin by addition of a second bioconversion strain. Together, these results demonstrate the promise of microbial production and modular bioconversion to access diversified flavonoids.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"83 ","pages":"Pages 1-11"},"PeriodicalIF":6.8000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging a Y. lipolytica naringenin chassis for biosynthesis of apigenin and associated glucoside\",\"authors\":\"Celeste B. Marsan , Sung Gyung Lee , Ankim Nguyen , Angela R. Gordillo Sierra , Sarah M. Coleman , Sierra M. Brooks , Hal S. Alper\",\"doi\":\"10.1016/j.ymben.2024.02.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flavonoids are a diverse set of natural products with promising bioactivities including anti-inflammatory, anti-cancer, and neuroprotective properties. Previously, the oleaginous host <em>Yarrowia lipolytica</em> has been engineered to produce high titers of the base flavonoid naringenin. Here, we leverage this host along with a set of <em>E. coli</em> bioconversion strains to produce the flavone apigenin and its glycosylated derivative isovitexin, two potential nutraceutical and pharmaceutical candidates. Through downstream strain selection, co-culture optimization, media composition, and mutant isolation, we were able to produce168 mg/L of apigenin, representing a 46% conversion rate of 2-(R/S)-naringenin to apigenin. This apigenin platform was modularly extended to produce isovitexin by addition of a second bioconversion strain. Together, these results demonstrate the promise of microbial production and modular bioconversion to access diversified flavonoids.</p></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\"83 \",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109671762400034X\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109671762400034X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Leveraging a Y. lipolytica naringenin chassis for biosynthesis of apigenin and associated glucoside
Flavonoids are a diverse set of natural products with promising bioactivities including anti-inflammatory, anti-cancer, and neuroprotective properties. Previously, the oleaginous host Yarrowia lipolytica has been engineered to produce high titers of the base flavonoid naringenin. Here, we leverage this host along with a set of E. coli bioconversion strains to produce the flavone apigenin and its glycosylated derivative isovitexin, two potential nutraceutical and pharmaceutical candidates. Through downstream strain selection, co-culture optimization, media composition, and mutant isolation, we were able to produce168 mg/L of apigenin, representing a 46% conversion rate of 2-(R/S)-naringenin to apigenin. This apigenin platform was modularly extended to produce isovitexin by addition of a second bioconversion strain. Together, these results demonstrate the promise of microbial production and modular bioconversion to access diversified flavonoids.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.