Hanif J. Khameneh , Marco Bolis , Pedro M.O. Ventura , Giada A. Cassanmagnago , Berenice A. Fischer , Alessandro Zenobi , Jessica Guerra , Irene Buzzago , Maurizio Bernasconi , Guido J.R. Zaman , Andrea Rinaldi , Simone G. Moro , Federica Sallusto , Edouard Baulier , Christian Pasquali , Greta Guarda
{"title":"细菌裂解物 OM-85 与 Toll 样受体 2 和 4 结合,触发人类髓系细胞的免疫调节基因特征。","authors":"Hanif J. Khameneh , Marco Bolis , Pedro M.O. Ventura , Giada A. Cassanmagnago , Berenice A. Fischer , Alessandro Zenobi , Jessica Guerra , Irene Buzzago , Maurizio Bernasconi , Guido J.R. Zaman , Andrea Rinaldi , Simone G. Moro , Federica Sallusto , Edouard Baulier , Christian Pasquali , Greta Guarda","doi":"10.1016/j.mucimm.2024.02.010","DOIUrl":null,"url":null,"abstract":"<div><p>OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects <em>in vivo</em> has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 <em>in vitro</em> and <em>in vivo</em>. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 3","pages":"Pages 346-358"},"PeriodicalIF":7.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000199/pdfft?md5=952f550f9df393fabde33cb319bc6a8e&pid=1-s2.0-S1933021924000199-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The bacterial lysate OM-85 engages Toll-like receptors 2 and 4 triggering an immunomodulatory gene signature in human myeloid cells\",\"authors\":\"Hanif J. Khameneh , Marco Bolis , Pedro M.O. Ventura , Giada A. Cassanmagnago , Berenice A. Fischer , Alessandro Zenobi , Jessica Guerra , Irene Buzzago , Maurizio Bernasconi , Guido J.R. Zaman , Andrea Rinaldi , Simone G. Moro , Federica Sallusto , Edouard Baulier , Christian Pasquali , Greta Guarda\",\"doi\":\"10.1016/j.mucimm.2024.02.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects <em>in vivo</em> has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 <em>in vitro</em> and <em>in vivo</em>. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.</p></div>\",\"PeriodicalId\":18877,\"journal\":{\"name\":\"Mucosal Immunology\",\"volume\":\"17 3\",\"pages\":\"Pages 346-358\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1933021924000199/pdfft?md5=952f550f9df393fabde33cb319bc6a8e&pid=1-s2.0-S1933021924000199-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mucosal Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1933021924000199\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1933021924000199","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The bacterial lysate OM-85 engages Toll-like receptors 2 and 4 triggering an immunomodulatory gene signature in human myeloid cells
OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects in vivo has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 in vitro and in vivo. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.
期刊介绍:
Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.