{"title":"mRNA 生物学和药理学的分子突破为开发有效的 mRNA 抗 COVID-19 疫苗铺平了道路。","authors":"Jaime Garcia-Heras","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The Nobel Prize in Physiology or Medicine for 2023 awarded to Dr. Katalin Karikó and Dr. Drew Weissman recognized their seminal discoveries in nucleoside modifications of messenger RNA that were pivotal to developing the first mRNA vaccines for clinical use in humans. These novel vaccines were key for prophylactic control of a pandemic caused by the new coronavirus SARS-CoV-2 that emerged abruptly in late 2019/early 2020. This breakthrough capped years of previous research in coronaviruses that included SARS- CoV and MERS-CoV associated with earlier human outbreaks, developments of more efficient formulations to deliver nucleic acids in vivo, and applications of a novel mRNA technology to generate a new generation of better vaccines cost-effectively. Such successful outcomes herald a wide range of advances with this highly adaptable mRNA technology. These include vaccines against existing infectious agents of medical significance but also emerging pathogens, cancer immunotherapies, and protein-replacement therapies, while at the same time, other uses are also under active investigation.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":"50 1","pages":"5-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Molecular Breakthroughs in mRNA Biology and Pharmacology that Paved Progress to Develop Effective mRNA Vaccines Against COVID-19.\",\"authors\":\"Jaime Garcia-Heras\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The Nobel Prize in Physiology or Medicine for 2023 awarded to Dr. Katalin Karikó and Dr. Drew Weissman recognized their seminal discoveries in nucleoside modifications of messenger RNA that were pivotal to developing the first mRNA vaccines for clinical use in humans. These novel vaccines were key for prophylactic control of a pandemic caused by the new coronavirus SARS-CoV-2 that emerged abruptly in late 2019/early 2020. This breakthrough capped years of previous research in coronaviruses that included SARS- CoV and MERS-CoV associated with earlier human outbreaks, developments of more efficient formulations to deliver nucleic acids in vivo, and applications of a novel mRNA technology to generate a new generation of better vaccines cost-effectively. Such successful outcomes herald a wide range of advances with this highly adaptable mRNA technology. These include vaccines against existing infectious agents of medical significance but also emerging pathogens, cancer immunotherapies, and protein-replacement therapies, while at the same time, other uses are also under active investigation.</p>\",\"PeriodicalId\":73975,\"journal\":{\"name\":\"Journal of the Association of Genetic Technologists\",\"volume\":\"50 1\",\"pages\":\"5-13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Association of Genetic Technologists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Genetic Technologists","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Molecular Breakthroughs in mRNA Biology and Pharmacology that Paved Progress to Develop Effective mRNA Vaccines Against COVID-19.
Objectives: The Nobel Prize in Physiology or Medicine for 2023 awarded to Dr. Katalin Karikó and Dr. Drew Weissman recognized their seminal discoveries in nucleoside modifications of messenger RNA that were pivotal to developing the first mRNA vaccines for clinical use in humans. These novel vaccines were key for prophylactic control of a pandemic caused by the new coronavirus SARS-CoV-2 that emerged abruptly in late 2019/early 2020. This breakthrough capped years of previous research in coronaviruses that included SARS- CoV and MERS-CoV associated with earlier human outbreaks, developments of more efficient formulations to deliver nucleic acids in vivo, and applications of a novel mRNA technology to generate a new generation of better vaccines cost-effectively. Such successful outcomes herald a wide range of advances with this highly adaptable mRNA technology. These include vaccines against existing infectious agents of medical significance but also emerging pathogens, cancer immunotherapies, and protein-replacement therapies, while at the same time, other uses are also under active investigation.