{"title":"日本长期护理相关数据(包括 Kaigo-DB)的利用:当前趋势和未来方向分析。","authors":"Taeko Watanabe, Nanako Tamiya","doi":"10.35772/ghm.2023.01135","DOIUrl":null,"url":null,"abstract":"<p><p>Despite high expectations from the government and researchers regarding data utilization, comprehensive analysis of long-term care (LTC)-related data use has been limited. This study reviewed the use of LTC-related data, including Kaigo-DB, in Japan after 2020. There was an increase in studies using LTC-related data in Japan between 2020 and 2021, followed by a stabilization period. The national government provided 13.5% of this data (6.5% from Kaigo-DB), while prefectures and municipalities contributed 85.2%, and facilities provided 1.3%. The linked data used in 90.4% of the studies primarily consisted of original questionnaire or interview surveys (34.6%) and medical claims (34.0%). None of the studies based on Kaigo-DB utilized linked data. In terms of study design, cohort studies were the most common (84.6%), followed by descriptive (5.1%), cross-sectional (3.2%), and case-control studies (1.3%). Among the 138 individual-based analytical descriptive studies, the most frequently used LTC-related data as an exposure was LTC services (26.8%), and the most common data used as an outcome was LTC certification or care need level (43.5%), followed by the independence degree of daily living for the older adults with dementia (18.1%). To enhance the use of LTC-related data, especially the valuable national Kaigo-DB, insights can be gleaned from how researchers effectively utilize municipal and prefectural data. Streamlining access to Kaigo-DB and enabling its linkage with other datasets are promising for future research in this field.</p>","PeriodicalId":12556,"journal":{"name":"Global health & medicine","volume":"6 1","pages":"63-69"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912809/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilization of Japanese long-term care-related data including Kaigo-DB: An analysis of current trends and future directions.\",\"authors\":\"Taeko Watanabe, Nanako Tamiya\",\"doi\":\"10.35772/ghm.2023.01135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite high expectations from the government and researchers regarding data utilization, comprehensive analysis of long-term care (LTC)-related data use has been limited. This study reviewed the use of LTC-related data, including Kaigo-DB, in Japan after 2020. There was an increase in studies using LTC-related data in Japan between 2020 and 2021, followed by a stabilization period. The national government provided 13.5% of this data (6.5% from Kaigo-DB), while prefectures and municipalities contributed 85.2%, and facilities provided 1.3%. The linked data used in 90.4% of the studies primarily consisted of original questionnaire or interview surveys (34.6%) and medical claims (34.0%). None of the studies based on Kaigo-DB utilized linked data. In terms of study design, cohort studies were the most common (84.6%), followed by descriptive (5.1%), cross-sectional (3.2%), and case-control studies (1.3%). Among the 138 individual-based analytical descriptive studies, the most frequently used LTC-related data as an exposure was LTC services (26.8%), and the most common data used as an outcome was LTC certification or care need level (43.5%), followed by the independence degree of daily living for the older adults with dementia (18.1%). To enhance the use of LTC-related data, especially the valuable national Kaigo-DB, insights can be gleaned from how researchers effectively utilize municipal and prefectural data. Streamlining access to Kaigo-DB and enabling its linkage with other datasets are promising for future research in this field.</p>\",\"PeriodicalId\":12556,\"journal\":{\"name\":\"Global health & medicine\",\"volume\":\"6 1\",\"pages\":\"63-69\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912809/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global health & medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35772/ghm.2023.01135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global health & medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35772/ghm.2023.01135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Utilization of Japanese long-term care-related data including Kaigo-DB: An analysis of current trends and future directions.
Despite high expectations from the government and researchers regarding data utilization, comprehensive analysis of long-term care (LTC)-related data use has been limited. This study reviewed the use of LTC-related data, including Kaigo-DB, in Japan after 2020. There was an increase in studies using LTC-related data in Japan between 2020 and 2021, followed by a stabilization period. The national government provided 13.5% of this data (6.5% from Kaigo-DB), while prefectures and municipalities contributed 85.2%, and facilities provided 1.3%. The linked data used in 90.4% of the studies primarily consisted of original questionnaire or interview surveys (34.6%) and medical claims (34.0%). None of the studies based on Kaigo-DB utilized linked data. In terms of study design, cohort studies were the most common (84.6%), followed by descriptive (5.1%), cross-sectional (3.2%), and case-control studies (1.3%). Among the 138 individual-based analytical descriptive studies, the most frequently used LTC-related data as an exposure was LTC services (26.8%), and the most common data used as an outcome was LTC certification or care need level (43.5%), followed by the independence degree of daily living for the older adults with dementia (18.1%). To enhance the use of LTC-related data, especially the valuable national Kaigo-DB, insights can be gleaned from how researchers effectively utilize municipal and prefectural data. Streamlining access to Kaigo-DB and enabling its linkage with other datasets are promising for future research in this field.