城市环境中微尺度交通建模的离散事件方法

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Simulation Modelling Practice and Theory Pub Date : 2024-03-05 DOI:10.1016/j.simpat.2024.102920
Florian Condette , Eric Ramat , Patrick Sondi
{"title":"城市环境中微尺度交通建模的离散事件方法","authors":"Florian Condette ,&nbsp;Eric Ramat ,&nbsp;Patrick Sondi","doi":"10.1016/j.simpat.2024.102920","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present a new approach based on a discrete event formalism to model and simulate micro-scale urban traffic systems. The formalism is a coupling between the P-DEVS (Parallel-Discrete Event System Specification) formalism and UML (Unified Modeling Language) state machines. A system is represented by a set of coupled components. Each component supports the dynamics and logic of a system element. The models presented include the streets, intersections and traffic signs, all of which can be synchronized together through specific mechanisms. These models can be applied to real-world OpenStreetMap networks. A discrete event-driven adaptation of the simplified Gipps car-following model is introduced, and subsequently compared to its discrete time counterpart. The results show that our discrete event model follows dynamics which are similar to those of a discrete time model with a low update time step of 0.1s, despite not taking certain non-linearities of the latter into account. In terms of vehicle state changes and computation time, our approach outperforms the discrete time one with an update time step of 1s, both on a simple case study and on a real network.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A discrete event approach to micro-scale traffic modeling in urban environment\",\"authors\":\"Florian Condette ,&nbsp;Eric Ramat ,&nbsp;Patrick Sondi\",\"doi\":\"10.1016/j.simpat.2024.102920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we present a new approach based on a discrete event formalism to model and simulate micro-scale urban traffic systems. The formalism is a coupling between the P-DEVS (Parallel-Discrete Event System Specification) formalism and UML (Unified Modeling Language) state machines. A system is represented by a set of coupled components. Each component supports the dynamics and logic of a system element. The models presented include the streets, intersections and traffic signs, all of which can be synchronized together through specific mechanisms. These models can be applied to real-world OpenStreetMap networks. A discrete event-driven adaptation of the simplified Gipps car-following model is introduced, and subsequently compared to its discrete time counterpart. The results show that our discrete event model follows dynamics which are similar to those of a discrete time model with a low update time step of 0.1s, despite not taking certain non-linearities of the latter into account. In terms of vehicle state changes and computation time, our approach outperforms the discrete time one with an update time step of 1s, both on a simple case study and on a real network.</p></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24000340\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000340","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种基于离散事件形式主义的新方法,用于建模和模拟微尺度城市交通系统。该形式主义是 P-DEVS(并行离散事件系统规范)形式主义与 UML(统一建模语言)状态机之间的耦合。系统由一组耦合组件表示。每个组件都支持系统元素的动态和逻辑。所展示的模型包括街道、交叉路口和交通标志,所有这些都可以通过特定机制同步在一起。这些模型可应用于真实世界的 OpenStreetMap 网络。本文介绍了简化版 Gipps 汽车跟随模型的离散事件驱动改编版,并将其与离散时间对应模型进行了比较。结果表明,我们的离散事件模型与更新时间步长为 0.1 秒的离散时间模型的动态相似,尽管后者的某些非线性因素未被考虑在内。就车辆状态变化和计算时间而言,无论是在简单的案例研究中还是在真实网络中,我们的方法都优于更新时间步长为 1s 的离散时间方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A discrete event approach to micro-scale traffic modeling in urban environment

In this work, we present a new approach based on a discrete event formalism to model and simulate micro-scale urban traffic systems. The formalism is a coupling between the P-DEVS (Parallel-Discrete Event System Specification) formalism and UML (Unified Modeling Language) state machines. A system is represented by a set of coupled components. Each component supports the dynamics and logic of a system element. The models presented include the streets, intersections and traffic signs, all of which can be synchronized together through specific mechanisms. These models can be applied to real-world OpenStreetMap networks. A discrete event-driven adaptation of the simplified Gipps car-following model is introduced, and subsequently compared to its discrete time counterpart. The results show that our discrete event model follows dynamics which are similar to those of a discrete time model with a low update time step of 0.1s, despite not taking certain non-linearities of the latter into account. In terms of vehicle state changes and computation time, our approach outperforms the discrete time one with an update time step of 1s, both on a simple case study and on a real network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
期刊最新文献
Machine learning-assisted microscopic public transportation simulation: Two coupling strategies A novel energy-efficient and cost-effective task offloading approach for UAV-enabled MEC with LEO enhancement in Internet of Remote Things networks An AI-driven solution to prevent adversarial attacks on mobile Vehicle-to-Microgrid services Advancements in traffic simulation for enhanced road safety: A review Investigation on directional rock fracture mechanism under instantaneous expansion from the perspective of damage mechanics: A 3-D simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1