压力中心回文揭示了脊柱侧弯女孩摇摆不定的站立平衡能力

IF 1.4 3区 医学 Q4 ENGINEERING, BIOMEDICAL Clinical Biomechanics Pub Date : 2024-03-01 DOI:10.1016/j.clinbiomech.2024.106217
Sébastien Leteneur , Mathias Blandeau , Franck Barbier , Nader Farahpour , Paul Allard
{"title":"压力中心回文揭示了脊柱侧弯女孩摇摆不定的站立平衡能力","authors":"Sébastien Leteneur ,&nbsp;Mathias Blandeau ,&nbsp;Franck Barbier ,&nbsp;Nader Farahpour ,&nbsp;Paul Allard","doi":"10.1016/j.clinbiomech.2024.106217","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>This study characterized the center of pressure planar displacement by palindromic strings. The objective is to test if the center of pressure pathway of able-bodied girls and those with a moderate and severe scoliosis displayed similar palindromic tendencies.</p></div><div><h3>Methods</h3><p>The center of pressure excursions of 21 able-bodied girls were compared to 14 girls with a moderate scoliosis and 14 girls with severe one. Each girl was asked to stand upright on a force platform for 64 s. A crisscross grid of nine areas was centered around the mean center of pressure position (G) to define three other zones to use the MATLAB built-in nucleotide sequence analysis function. These were the antero-posterior extremities A, the coronal extremities C and the tilted or the four corners of the crisscross grid, T. The center of pressure positions were associated to any of the 4 zones using the GATC acronym.</p></div><div><h3>Findings</h3><p>For all groups center of pressure pattern in decreasing order was A, G, T and C. Able-bodied girls favored the A zones. Girls with moderate scoliosis displaced their center of pressure mostly in the A zones with shifts in the T sections (<em>P</em> ≤ 0.001). Girls with severe scoliosis, additionally displaced their center of pressure in the C zones (P ≤ 0.001).</p></div><div><h3>Interpretation</h3><p>An ankle modality characterized able-bodied girl's standing balance. Girls with a moderate scoliosis privilege the palindromic zones in the antero-posterior extremities with excursions in the corners of the base of support, girls with severe scoliosis further relied on the medio-lateral zones, suggesting a wobbling standing balance.</p></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Center of pressure palindromes reveals a wobbling standing balance in scoliotic girls\",\"authors\":\"Sébastien Leteneur ,&nbsp;Mathias Blandeau ,&nbsp;Franck Barbier ,&nbsp;Nader Farahpour ,&nbsp;Paul Allard\",\"doi\":\"10.1016/j.clinbiomech.2024.106217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>This study characterized the center of pressure planar displacement by palindromic strings. The objective is to test if the center of pressure pathway of able-bodied girls and those with a moderate and severe scoliosis displayed similar palindromic tendencies.</p></div><div><h3>Methods</h3><p>The center of pressure excursions of 21 able-bodied girls were compared to 14 girls with a moderate scoliosis and 14 girls with severe one. Each girl was asked to stand upright on a force platform for 64 s. A crisscross grid of nine areas was centered around the mean center of pressure position (G) to define three other zones to use the MATLAB built-in nucleotide sequence analysis function. These were the antero-posterior extremities A, the coronal extremities C and the tilted or the four corners of the crisscross grid, T. The center of pressure positions were associated to any of the 4 zones using the GATC acronym.</p></div><div><h3>Findings</h3><p>For all groups center of pressure pattern in decreasing order was A, G, T and C. Able-bodied girls favored the A zones. Girls with moderate scoliosis displaced their center of pressure mostly in the A zones with shifts in the T sections (<em>P</em> ≤ 0.001). Girls with severe scoliosis, additionally displaced their center of pressure in the C zones (P ≤ 0.001).</p></div><div><h3>Interpretation</h3><p>An ankle modality characterized able-bodied girl's standing balance. Girls with a moderate scoliosis privilege the palindromic zones in the antero-posterior extremities with excursions in the corners of the base of support, girls with severe scoliosis further relied on the medio-lateral zones, suggesting a wobbling standing balance.</p></div>\",\"PeriodicalId\":50992,\"journal\":{\"name\":\"Clinical Biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268003324000494\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003324000494","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究描述了压力中心平面位移的回旋弦特征。目的是测试健全女孩与中度和重度脊柱侧弯女孩的压力中心路径是否显示出相似的回旋趋势。21 名健全女孩与 14 名中度脊柱侧凸女孩和 14 名重度脊柱侧凸女孩的 CoP 偏移进行了比较。每个女孩都被要求在受力平台上直立站立 64 秒钟。以平均压力中心位置(G)为中心,由九个区域组成的纵横交错的网格定义了另外三个区域,以使用 MATLAB 内置的核苷酸序列分析功能。压力中心位置使用 GATC 首字母缩写词与 4 个区域中的任何一个相关联。所有组别的压力中心位置依次为 A、G、T 和 C。患有中度脊柱侧凸的女孩的压力中心主要偏移在 A 区,T 区也有偏移(≤ 0.001)。重度脊柱侧弯的女孩则会将压力中心转移到 C 区(P ≤ 0.001)。踝关节模式是健全女孩站立平衡的特征。中度脊柱侧凸的女孩在前后肢的垛状区享有特权,并在支撑基座的角落处有偏移,而重度脊柱侧凸的女孩则进一步依赖于内外侧区,这表明她们的站立平衡是摇摆不定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Center of pressure palindromes reveals a wobbling standing balance in scoliotic girls

Background

This study characterized the center of pressure planar displacement by palindromic strings. The objective is to test if the center of pressure pathway of able-bodied girls and those with a moderate and severe scoliosis displayed similar palindromic tendencies.

Methods

The center of pressure excursions of 21 able-bodied girls were compared to 14 girls with a moderate scoliosis and 14 girls with severe one. Each girl was asked to stand upright on a force platform for 64 s. A crisscross grid of nine areas was centered around the mean center of pressure position (G) to define three other zones to use the MATLAB built-in nucleotide sequence analysis function. These were the antero-posterior extremities A, the coronal extremities C and the tilted or the four corners of the crisscross grid, T. The center of pressure positions were associated to any of the 4 zones using the GATC acronym.

Findings

For all groups center of pressure pattern in decreasing order was A, G, T and C. Able-bodied girls favored the A zones. Girls with moderate scoliosis displaced their center of pressure mostly in the A zones with shifts in the T sections (P ≤ 0.001). Girls with severe scoliosis, additionally displaced their center of pressure in the C zones (P ≤ 0.001).

Interpretation

An ankle modality characterized able-bodied girl's standing balance. Girls with a moderate scoliosis privilege the palindromic zones in the antero-posterior extremities with excursions in the corners of the base of support, girls with severe scoliosis further relied on the medio-lateral zones, suggesting a wobbling standing balance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Biomechanics
Clinical Biomechanics 医学-工程:生物医学
CiteScore
3.30
自引率
5.60%
发文量
189
审稿时长
12.3 weeks
期刊介绍: Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field. The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management. A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly. Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians. The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time. Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.
期刊最新文献
Mid-vastus approach induces milder short-term effects on postural control compared to parapatellar approach in total knee arthroplasty. Between-limb difference in peak knee flexion angle can identify persons post-stroke with Stiff-Knee gait Fall assessment in healthy older adults: Approach using rambling-trembling decomposition method Biomechanical analysis of the effect of postero-latero-central tibial plateau fractures in the knee joint: Can posterior soft tissues prevent instability? A finite element study. Biomechanical modelling of indirect decompression in oblique lumbar intervertebral fusions – A finite element study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1