基于故障树分析的片断确定性马尔可夫过程的自适应重要性采样

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-07 DOI:10.1137/22m1522838
Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, Josselin Garnier
{"title":"基于故障树分析的片断确定性马尔可夫过程的自适应重要性采样","authors":"Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, Josselin Garnier","doi":"10.1137/22m1522838","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 128-156, March 2024. <br/> Abstract. Piecewise deterministic Markov processes (PDMPs) can be used to model complex dynamical industrial systems. The counterpart of this modeling capability is their simulation cost, which makes reliability assessment untractable with standard Monte Carlo methods. A significant variance reduction can be obtained with an adaptive importance sampling method based on a cross-entropy procedure. The success of this method relies on the selection of a good family of approximations of the committor function of the PDMP. In this paper original families are proposed. Their forms are based on reliability concepts related to fault tree analysis: minimal path sets and minimal cut sets. They are well adapted to high-dimensional industrial systems. The proposed method is discussed in detail and applied to academic systems and to a realistic system from the nuclear industry.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Importance Sampling Based on Fault Tree Analysis for Piecewise Deterministic Markov Process\",\"authors\":\"Guillaume Chennetier, Hassane Chraibi, Anne Dutfoy, Josselin Garnier\",\"doi\":\"10.1137/22m1522838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 128-156, March 2024. <br/> Abstract. Piecewise deterministic Markov processes (PDMPs) can be used to model complex dynamical industrial systems. The counterpart of this modeling capability is their simulation cost, which makes reliability assessment untractable with standard Monte Carlo methods. A significant variance reduction can be obtained with an adaptive importance sampling method based on a cross-entropy procedure. The success of this method relies on the selection of a good family of approximations of the committor function of the PDMP. In this paper original families are proposed. Their forms are based on reliability concepts related to fault tree analysis: minimal path sets and minimal cut sets. They are well adapted to high-dimensional industrial systems. The proposed method is discussed in detail and applied to academic systems and to a realistic system from the nuclear industry.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1522838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1522838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM/ASA 不确定性量化期刊》,第 12 卷第 1 期,第 128-156 页,2024 年 3 月。 摘要片断确定性马尔可夫过程(PDMP)可用于模拟复杂的动态工业系统。与这种建模能力相对应的是其仿真成本,这使得可靠性评估无法采用标准蒙特卡罗方法。基于交叉熵程序的自适应重要性采样方法可以显著降低方差。这种方法的成功依赖于选择一个良好的 PDMP 委托函数近似族。本文提出了新的近似族。它们的形式基于与故障树分析相关的可靠性概念:最小路径集和最小切割集。它们非常适合高维工业系统。本文对所提出的方法进行了详细讨论,并将其应用于学术系统和一个来自核工业的现实系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Importance Sampling Based on Fault Tree Analysis for Piecewise Deterministic Markov Process
SIAM/ASA Journal on Uncertainty Quantification, Volume 12, Issue 1, Page 128-156, March 2024.
Abstract. Piecewise deterministic Markov processes (PDMPs) can be used to model complex dynamical industrial systems. The counterpart of this modeling capability is their simulation cost, which makes reliability assessment untractable with standard Monte Carlo methods. A significant variance reduction can be obtained with an adaptive importance sampling method based on a cross-entropy procedure. The success of this method relies on the selection of a good family of approximations of the committor function of the PDMP. In this paper original families are proposed. Their forms are based on reliability concepts related to fault tree analysis: minimal path sets and minimal cut sets. They are well adapted to high-dimensional industrial systems. The proposed method is discussed in detail and applied to academic systems and to a realistic system from the nuclear industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1