求助PDF
{"title":"基于光可逆反应和氢键的自愈合水性含氟聚氨酯丙烯酸酯","authors":"Xiuqing Liu, Jianhua Zhou, Hong Li","doi":"10.1002/pi.6629","DOIUrl":null,"url":null,"abstract":"<p>The development of self-healing materials is an effective strategy to improve the service life of polymer materials. In this study, self-healing waterborne fluorinated polyurethane-acrylate (WFPUA) containing UV-responsive coumarin groups was prepared by Pickering emulsion polymerization using modified cellulose nanocrystal as a stabilizer. The effect of double bond-terminated waterborne polyurethane content on emulsion polymerization and latex film properties was mainly studied. Due to the dynamic reversibility of the coumarin groups and the synergistic effect of hydrogen bonds, the optimized sample (WFPUA-30) had excellent mechanical properties and self-healing properties. The tensile strength was 5.24 MPa and the elongation at break was 267%. The self-healing efficiency of tensile strength and elongation at break after 6 h of repair was 86.52% and 93.20%, respectively. In addition, due to the presence of fluorine-containing groups, the water and oil contact angles of the latex film could reach 101.7° and 82.1°, respectively. This work broadens the way for the manufacture of self-healing and multifunctional waterborne polyurethane-acrylates. © 2024 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 7","pages":"563-572"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-healing waterborne fluorinated polyurethane-acrylate based on photoreversible reaction and hydrogen bonds\",\"authors\":\"Xiuqing Liu, Jianhua Zhou, Hong Li\",\"doi\":\"10.1002/pi.6629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of self-healing materials is an effective strategy to improve the service life of polymer materials. In this study, self-healing waterborne fluorinated polyurethane-acrylate (WFPUA) containing UV-responsive coumarin groups was prepared by Pickering emulsion polymerization using modified cellulose nanocrystal as a stabilizer. The effect of double bond-terminated waterborne polyurethane content on emulsion polymerization and latex film properties was mainly studied. Due to the dynamic reversibility of the coumarin groups and the synergistic effect of hydrogen bonds, the optimized sample (WFPUA-30) had excellent mechanical properties and self-healing properties. The tensile strength was 5.24 MPa and the elongation at break was 267%. The self-healing efficiency of tensile strength and elongation at break after 6 h of repair was 86.52% and 93.20%, respectively. In addition, due to the presence of fluorine-containing groups, the water and oil contact angles of the latex film could reach 101.7° and 82.1°, respectively. This work broadens the way for the manufacture of self-healing and multifunctional waterborne polyurethane-acrylates. © 2024 Society of Industrial Chemistry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":\"73 7\",\"pages\":\"563-572\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6629\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6629","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用