{"title":"大规模评估机器编码可信度的方法","authors":"Rebeckah K. Fussell, Emily M. Stump, N. G. Holmes","doi":"10.1103/physrevphyseducres.20.010113","DOIUrl":null,"url":null,"abstract":"Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing much larger and broader datasets to be analyzed than is practical with human coders. Existing work that uses these tools, however, does not investigate norms that allow for trustworthy quantitative claims without full reliance on cross-checking with human coding, which defeats the purpose of using these automated tools. Here we propose a four-part method for making such claims with supervised natural language processing: evaluating a trained model, calculating statistical uncertainty, calculating systematic uncertainty from the trained algorithm, and calculating systematic uncertainty from novel data sources. We provide evidence for this method using data from two distinct short response survey questions with two distinct coding schemes. We also provide a real-world example of using these practices to machine code a dataset unseen by human coders. We offer recommendations to guide physics education researchers who may use machine-coding methods in the future.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":"66 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method to assess the trustworthiness of machine coding at scale\",\"authors\":\"Rebeckah K. Fussell, Emily M. Stump, N. G. Holmes\",\"doi\":\"10.1103/physrevphyseducres.20.010113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing much larger and broader datasets to be analyzed than is practical with human coders. Existing work that uses these tools, however, does not investigate norms that allow for trustworthy quantitative claims without full reliance on cross-checking with human coding, which defeats the purpose of using these automated tools. Here we propose a four-part method for making such claims with supervised natural language processing: evaluating a trained model, calculating statistical uncertainty, calculating systematic uncertainty from the trained algorithm, and calculating systematic uncertainty from novel data sources. We provide evidence for this method using data from two distinct short response survey questions with two distinct coding schemes. We also provide a real-world example of using these practices to machine code a dataset unseen by human coders. We offer recommendations to guide physics education researchers who may use machine-coding methods in the future.\",\"PeriodicalId\":54296,\"journal\":{\"name\":\"Physical Review Physics Education Research\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Physics Education Research\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevphyseducres.20.010113\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.20.010113","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Method to assess the trustworthiness of machine coding at scale
Physics education researchers are interested in using the tools of machine learning and natural language processing to make quantitative claims from natural language and text data, such as open-ended responses to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent than human coding, allowing much larger and broader datasets to be analyzed than is practical with human coders. Existing work that uses these tools, however, does not investigate norms that allow for trustworthy quantitative claims without full reliance on cross-checking with human coding, which defeats the purpose of using these automated tools. Here we propose a four-part method for making such claims with supervised natural language processing: evaluating a trained model, calculating statistical uncertainty, calculating systematic uncertainty from the trained algorithm, and calculating systematic uncertainty from novel data sources. We provide evidence for this method using data from two distinct short response survey questions with two distinct coding schemes. We also provide a real-world example of using these practices to machine code a dataset unseen by human coders. We offer recommendations to guide physics education researchers who may use machine-coding methods in the future.
期刊介绍:
PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to:
Educational policy
Instructional strategies, and materials development
Research methodology
Epistemology, attitudes, and beliefs
Learning environment
Scientific reasoning and problem solving
Diversity and inclusion
Learning theory
Student participation
Faculty and teacher professional development