随机几何图上的自发同步保证

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-07 DOI:10.1137/23m1559270
Pedro Abdalla, Afonso S. Bandeira, Clara Invernizzi
{"title":"随机几何图上的自发同步保证","authors":"Pedro Abdalla, Afonso S. Bandeira, Clara Invernizzi","doi":"10.1137/23m1559270","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 779-790, March 2024. <br/> Abstract. The Kuramoto model is a classical mathematical model in the field of nonlinear dynamical systems that describes the evolution of coupled oscillators in a network that may reach a synchronous state. The relationship between the network’s topology and whether the oscillators synchronize is a central question in the field of synchronization, and random graphs are often employed as a proxy for complex networks. On the other hand, the random graphs on which the Kuramoto model is rigorously analyzed in the literature are homogeneous models and fail to capture the underlying geometric structure that appears in several examples. In this work, we leverage tools from random matrix theory, random graphs, and mathematical statistics to prove that the Kuramoto model on a random geometric graph on the sphere synchronizes with probability tending to one as the number of nodes tends to infinity. To the best of our knowledge, this is the first rigorous result for the Kuramoto model on random geometric graphs.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guarantees for Spontaneous Synchronization on Random Geometric Graphs\",\"authors\":\"Pedro Abdalla, Afonso S. Bandeira, Clara Invernizzi\",\"doi\":\"10.1137/23m1559270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 779-790, March 2024. <br/> Abstract. The Kuramoto model is a classical mathematical model in the field of nonlinear dynamical systems that describes the evolution of coupled oscillators in a network that may reach a synchronous state. The relationship between the network’s topology and whether the oscillators synchronize is a central question in the field of synchronization, and random graphs are often employed as a proxy for complex networks. On the other hand, the random graphs on which the Kuramoto model is rigorously analyzed in the literature are homogeneous models and fail to capture the underlying geometric structure that appears in several examples. In this work, we leverage tools from random matrix theory, random graphs, and mathematical statistics to prove that the Kuramoto model on a random geometric graph on the sphere synchronizes with probability tending to one as the number of nodes tends to infinity. To the best of our knowledge, this is the first rigorous result for the Kuramoto model on random geometric graphs.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1559270\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1559270","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》第 23 卷第 1 期第 779-790 页,2024 年 3 月。 摘要仓本模型是非线性动力系统领域的一个经典数学模型,它描述了网络中耦合振荡器可能达到同步状态的演化过程。网络拓扑结构与振荡器是否同步之间的关系是同步领域的核心问题,随机图经常被用作复杂网络的代表。另一方面,文献中对仓本模型进行严格分析的随机图都是同质模型,无法捕捉到若干实例中出现的潜在几何结构。在这项研究中,我们利用随机矩阵理论、随机图和数理统计的工具,证明了球面随机几何图上的仓本模型在节点数趋于无穷大时,同步概率趋于一。据我们所知,这是第一个关于随机几何图上的仓本模型的严格结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Guarantees for Spontaneous Synchronization on Random Geometric Graphs
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 779-790, March 2024.
Abstract. The Kuramoto model is a classical mathematical model in the field of nonlinear dynamical systems that describes the evolution of coupled oscillators in a network that may reach a synchronous state. The relationship between the network’s topology and whether the oscillators synchronize is a central question in the field of synchronization, and random graphs are often employed as a proxy for complex networks. On the other hand, the random graphs on which the Kuramoto model is rigorously analyzed in the literature are homogeneous models and fail to capture the underlying geometric structure that appears in several examples. In this work, we leverage tools from random matrix theory, random graphs, and mathematical statistics to prove that the Kuramoto model on a random geometric graph on the sphere synchronizes with probability tending to one as the number of nodes tends to infinity. To the best of our knowledge, this is the first rigorous result for the Kuramoto model on random geometric graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1