Shashank Singh, V. Subburaj, K. Sivakumar, R. Anil Kumar, M. S. Muthuramam, Ravi Rastogi, Vishal Ratansing Patil, A. Rajaram
{"title":"使用深度学习的混合可再生能源系统最佳功率预测技术","authors":"Shashank Singh, V. Subburaj, K. Sivakumar, R. Anil Kumar, M. S. Muthuramam, Ravi Rastogi, Vishal Ratansing Patil, A. Rajaram","doi":"10.1080/15325008.2024.2316251","DOIUrl":null,"url":null,"abstract":"Power forecasting in large-scale electrical systems, comprising photovoltaic (PV), solar, and wind power, faces challenges due to geographical diffusion and temporal variations. Despite numerous st...","PeriodicalId":50548,"journal":{"name":"Electric Power Components and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimum Power Forecasting Technique for Hybrid Renewable Energy Systems Using Deep Learning\",\"authors\":\"Shashank Singh, V. Subburaj, K. Sivakumar, R. Anil Kumar, M. S. Muthuramam, Ravi Rastogi, Vishal Ratansing Patil, A. Rajaram\",\"doi\":\"10.1080/15325008.2024.2316251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power forecasting in large-scale electrical systems, comprising photovoltaic (PV), solar, and wind power, faces challenges due to geographical diffusion and temporal variations. Despite numerous st...\",\"PeriodicalId\":50548,\"journal\":{\"name\":\"Electric Power Components and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Components and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15325008.2024.2316251\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Components and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15325008.2024.2316251","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimum Power Forecasting Technique for Hybrid Renewable Energy Systems Using Deep Learning
Power forecasting in large-scale electrical systems, comprising photovoltaic (PV), solar, and wind power, faces challenges due to geographical diffusion and temporal variations. Despite numerous st...
期刊介绍:
Electric Power Components and Systems publishes original theoretical and applied papers of permanent reference value related to the broad field of electric machines and drives, power electronics converters, electromechanical devices, electrical equipment, renewable and sustainable electric energy applications, and power systems.
Specific topics covered include:
-Electric machines-
Solid-state control of electric machine drives-
Power electronics converters-
Electromagnetic fields in energy converters-
Renewable energy generators and systems-
Power system planning-
Transmission and distribution-
Power system protection-
Dispatching and scheduling-
Stability, reliability, and security-
Renewable energy integration-
Smart-grid and micro-grid technologies.