{"title":"关于空间非均质非线性福克-普朗克方程:考奇问题和扩散渐近学","authors":"Francesca Anceschi, Yuzhe Zhu","doi":"10.2140/apde.2024.17.379","DOIUrl":null,"url":null,"abstract":"<p>We investigate the Cauchy problem and the diffusion asymptotics for a spatially inhomogeneous kinetic model associated to a nonlinear Fokker–Planck operator. We derive the global well-posedness result with instantaneous smoothness effect, when the initial data lies below a Maxwellian. The proof relies on the hypoelliptic analog of classical parabolic theory, as well as a positivity-spreading result based on the Harnack inequality and barrier function methods. Moreover, the scaled equation leads to the fast diffusion flow under the low field limit. The relative phi-entropy method enables us to see the connection between the overdamped dynamics of the nonlinearly coupled kinetic model and the correlated fast diffusion. The global-in-time quantitative diffusion asymptotics is then derived by combining entropic hypocoercivity, relative phi-entropy, and barrier function methods. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a spatially inhomogeneous nonlinear Fokker–Planck equation : Cauchy problem and diffusion asymptotics\",\"authors\":\"Francesca Anceschi, Yuzhe Zhu\",\"doi\":\"10.2140/apde.2024.17.379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the Cauchy problem and the diffusion asymptotics for a spatially inhomogeneous kinetic model associated to a nonlinear Fokker–Planck operator. We derive the global well-posedness result with instantaneous smoothness effect, when the initial data lies below a Maxwellian. The proof relies on the hypoelliptic analog of classical parabolic theory, as well as a positivity-spreading result based on the Harnack inequality and barrier function methods. Moreover, the scaled equation leads to the fast diffusion flow under the low field limit. The relative phi-entropy method enables us to see the connection between the overdamped dynamics of the nonlinearly coupled kinetic model and the correlated fast diffusion. The global-in-time quantitative diffusion asymptotics is then derived by combining entropic hypocoercivity, relative phi-entropy, and barrier function methods. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.379\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.379","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a spatially inhomogeneous nonlinear Fokker–Planck equation : Cauchy problem and diffusion asymptotics
We investigate the Cauchy problem and the diffusion asymptotics for a spatially inhomogeneous kinetic model associated to a nonlinear Fokker–Planck operator. We derive the global well-posedness result with instantaneous smoothness effect, when the initial data lies below a Maxwellian. The proof relies on the hypoelliptic analog of classical parabolic theory, as well as a positivity-spreading result based on the Harnack inequality and barrier function methods. Moreover, the scaled equation leads to the fast diffusion flow under the low field limit. The relative phi-entropy method enables us to see the connection between the overdamped dynamics of the nonlinearly coupled kinetic model and the correlated fast diffusion. The global-in-time quantitative diffusion asymptotics is then derived by combining entropic hypocoercivity, relative phi-entropy, and barrier function methods.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.