用于单晶片反应器中低温硅外延过程模拟的表面化学模型

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Journal of Vacuum Science & Technology A Pub Date : 2024-01-29 DOI:10.1116/6.0003340
Linda Jäckel, Andreas Zienert, Annekathrin Zeun, Anna-Sophie Seidel, Jörg Schuster
{"title":"用于单晶片反应器中低温硅外延过程模拟的表面化学模型","authors":"Linda Jäckel, Andreas Zienert, Annekathrin Zeun, Anna-Sophie Seidel, Jörg Schuster","doi":"10.1116/6.0003340","DOIUrl":null,"url":null,"abstract":"We investigate Si epitaxy using 3D reactor scale computational fluid dynamics simulations coupled with surface chemistry models for the growth of pure silicon and phosphorus-doped silicon (Si:P) films. We focus on low temperature Si and Si:P processes using dichlorosilane (DCS) and phosphine. Based on existing DCS-based Si chemistry models for higher process temperatures, we developed a new kinetic chemistry model for low temperature Si epitaxy. To include doping, we developed an additional empirical model for Si:P epitaxy as there is not sufficient qualitative data on phosphine chemistry available for a kinetic chemistry model. This work provides Si and Si:P surface chemistry models, which allow reactor scale process simulations to get valuable process insights, enabling rational process optimization and supporting process transfer. Process optimization is demonstrated through process parameter variation with the main goal being the reduction of Si process variability by increasing within-wafer growth rate homogeneity.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"30 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface chemistry models for low temperature Si epitaxy process simulation in a single-wafer reactor\",\"authors\":\"Linda Jäckel, Andreas Zienert, Annekathrin Zeun, Anna-Sophie Seidel, Jörg Schuster\",\"doi\":\"10.1116/6.0003340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate Si epitaxy using 3D reactor scale computational fluid dynamics simulations coupled with surface chemistry models for the growth of pure silicon and phosphorus-doped silicon (Si:P) films. We focus on low temperature Si and Si:P processes using dichlorosilane (DCS) and phosphine. Based on existing DCS-based Si chemistry models for higher process temperatures, we developed a new kinetic chemistry model for low temperature Si epitaxy. To include doping, we developed an additional empirical model for Si:P epitaxy as there is not sufficient qualitative data on phosphine chemistry available for a kinetic chemistry model. This work provides Si and Si:P surface chemistry models, which allow reactor scale process simulations to get valuable process insights, enabling rational process optimization and supporting process transfer. Process optimization is demonstrated through process parameter variation with the main goal being the reduction of Si process variability by increasing within-wafer growth rate homogeneity.\",\"PeriodicalId\":17490,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003340\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1116/6.0003340","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用三维反应器规模的计算流体动力学模拟,结合纯硅和掺磷硅(Si:P)薄膜生长的表面化学模型,对硅外延进行了研究。我们重点研究了使用二氯硅烷(DCS)和磷化氢的低温硅和 Si:P 过程。基于现有的适用于较高工艺温度的基于二氯硅烷的硅化学模型,我们为低温硅外延开发了一种新的动力学化学模型。由于没有足够的膦化学定性数据可用于动力学化学模型,为了将掺杂包括在内,我们为 Si:P 外延开发了一个额外的经验模型。这项工作提供了硅和硅:磷表面化学模型,可通过反应器规模的工艺模拟获得有价值的工艺见解,从而实现合理的工艺优化并支持工艺转移。工艺优化是通过工艺参数的变化来实现的,其主要目标是通过提高晶片内生长率的均匀性来减少硅工艺的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface chemistry models for low temperature Si epitaxy process simulation in a single-wafer reactor
We investigate Si epitaxy using 3D reactor scale computational fluid dynamics simulations coupled with surface chemistry models for the growth of pure silicon and phosphorus-doped silicon (Si:P) films. We focus on low temperature Si and Si:P processes using dichlorosilane (DCS) and phosphine. Based on existing DCS-based Si chemistry models for higher process temperatures, we developed a new kinetic chemistry model for low temperature Si epitaxy. To include doping, we developed an additional empirical model for Si:P epitaxy as there is not sufficient qualitative data on phosphine chemistry available for a kinetic chemistry model. This work provides Si and Si:P surface chemistry models, which allow reactor scale process simulations to get valuable process insights, enabling rational process optimization and supporting process transfer. Process optimization is demonstrated through process parameter variation with the main goal being the reduction of Si process variability by increasing within-wafer growth rate homogeneity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vacuum Science & Technology A
Journal of Vacuum Science & Technology A 工程技术-材料科学:膜
CiteScore
5.10
自引率
10.30%
发文量
247
审稿时长
2.1 months
期刊介绍: Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.
期刊最新文献
ToF-SIMS analysis of ultrathin films and their fragmentation patterns. Spinel LiGa5O8 prospects as ultra-wideband-gap semiconductor: Band structure, optical properties, and doping Dislocation avalanches in nanostructured molybdenum nanopillars Plasma nitridation for atomic layer etching of Ni Hardness, adhesion, and wear behavior of magnetron cosputtered Ti:Zr-O-N thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1