{"title":"利用高光谱成像技术无损检测油菜叶片水分含量的方法","authors":"Yang Liu, Xin Zhou, Jun Sun, Bo Li, Jiaying Ji","doi":"10.1007/s10921-024-01049-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study assessed the viability of using hyperspectral imaging (HSI) technology for nondestructive detection of moisture content in oilseed rape leaves. Besides, a method (IVISSA-iPLS) coupling interval variable iterative space shrinkage approach (IVISSA) with interval partial least square (iPLS) was introduced to identify characteristic wavelengths. The IVISSA-iPLS algorithm changed the selection target from wavelength points to spectral intervals, reducing the computational burden while increasing the continuity between the selected wavelengths. Subsequently, the characteristic wavelengths selected by the IVISSA-iPLS were used as the input of the least square support vector regression (LSSVR) model to predict the moisture content of oilseed rape leaves. Additionally, the competitive adaptive reweighted sampling (CARS), the successive projections algorithm (SPA), the IVISSA, and the iPLS were investigated as wavelength selection algorithms for comparison. The results indicated that the LSSVR models based on the characteristic wavelengths acquired from the IVISSA-iPLS using divided wavelength intervals of 30, demonstrated the highest performance, with <span>\\({{\\text{R}}}_{{\\text{p}}}^{2}\\)</span> of 0.9555, RMSEP of 0.0065, and <span>\\({\\text{RPD}}\\)</span> of 4.715. Finally, the optimal prediction model was used to visualize the moisture content of oilseed rape leaves, which offered a more intuitive and effective method for the evaluation of moisture content. The results ascertained the significant possibility of combining HSI with combinatorial algorithms in detecting, quantifying, and visualizing the moisture content of oilseed rape leaves.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Non-destructive Detection of Moisture Content in Oilseed Rape Leaves Using Hyperspectral Imaging Technology\",\"authors\":\"Yang Liu, Xin Zhou, Jun Sun, Bo Li, Jiaying Ji\",\"doi\":\"10.1007/s10921-024-01049-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study assessed the viability of using hyperspectral imaging (HSI) technology for nondestructive detection of moisture content in oilseed rape leaves. Besides, a method (IVISSA-iPLS) coupling interval variable iterative space shrinkage approach (IVISSA) with interval partial least square (iPLS) was introduced to identify characteristic wavelengths. The IVISSA-iPLS algorithm changed the selection target from wavelength points to spectral intervals, reducing the computational burden while increasing the continuity between the selected wavelengths. Subsequently, the characteristic wavelengths selected by the IVISSA-iPLS were used as the input of the least square support vector regression (LSSVR) model to predict the moisture content of oilseed rape leaves. Additionally, the competitive adaptive reweighted sampling (CARS), the successive projections algorithm (SPA), the IVISSA, and the iPLS were investigated as wavelength selection algorithms for comparison. The results indicated that the LSSVR models based on the characteristic wavelengths acquired from the IVISSA-iPLS using divided wavelength intervals of 30, demonstrated the highest performance, with <span>\\\\({{\\\\text{R}}}_{{\\\\text{p}}}^{2}\\\\)</span> of 0.9555, RMSEP of 0.0065, and <span>\\\\({\\\\text{RPD}}\\\\)</span> of 4.715. Finally, the optimal prediction model was used to visualize the moisture content of oilseed rape leaves, which offered a more intuitive and effective method for the evaluation of moisture content. The results ascertained the significant possibility of combining HSI with combinatorial algorithms in detecting, quantifying, and visualizing the moisture content of oilseed rape leaves.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-024-01049-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01049-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A Method for Non-destructive Detection of Moisture Content in Oilseed Rape Leaves Using Hyperspectral Imaging Technology
This study assessed the viability of using hyperspectral imaging (HSI) technology for nondestructive detection of moisture content in oilseed rape leaves. Besides, a method (IVISSA-iPLS) coupling interval variable iterative space shrinkage approach (IVISSA) with interval partial least square (iPLS) was introduced to identify characteristic wavelengths. The IVISSA-iPLS algorithm changed the selection target from wavelength points to spectral intervals, reducing the computational burden while increasing the continuity between the selected wavelengths. Subsequently, the characteristic wavelengths selected by the IVISSA-iPLS were used as the input of the least square support vector regression (LSSVR) model to predict the moisture content of oilseed rape leaves. Additionally, the competitive adaptive reweighted sampling (CARS), the successive projections algorithm (SPA), the IVISSA, and the iPLS were investigated as wavelength selection algorithms for comparison. The results indicated that the LSSVR models based on the characteristic wavelengths acquired from the IVISSA-iPLS using divided wavelength intervals of 30, demonstrated the highest performance, with \({{\text{R}}}_{{\text{p}}}^{2}\) of 0.9555, RMSEP of 0.0065, and \({\text{RPD}}\) of 4.715. Finally, the optimal prediction model was used to visualize the moisture content of oilseed rape leaves, which offered a more intuitive and effective method for the evaluation of moisture content. The results ascertained the significant possibility of combining HSI with combinatorial algorithms in detecting, quantifying, and visualizing the moisture content of oilseed rape leaves.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.