基于代理的种群合成中原产地-目的地组合选择的表格推论

Pub Date : 2024-03-06 DOI:10.1002/sta4.656
Ioannis Zachos, Theodoros Damoulas, Mark Girolami
{"title":"基于代理的种群合成中原产地-目的地组合选择的表格推论","authors":"Ioannis Zachos, Theodoros Damoulas, Mark Girolami","doi":"10.1002/sta4.656","DOIUrl":null,"url":null,"abstract":"A key challenge in agent‐based mobility simulations is the synthesis of individual agent socioeconomic profiles. Such profiles include locations of agent activities, which dictate the quality of the simulated travel patterns. These locations are typically represented in origin‐destination matrices that are sampled using coarse travel surveys. This is because fine‐grained trip profiles are scarce and fragmented due to privacy and cost reasons. The discrepancy between data and sampling resolutions renders agent traits nonidentifiable due to the combinatorial space of data‐consistent individual attributes. This problem is pertinent to any agent‐based inference setting where the latent state is discrete. Existing approaches have used continuous relaxations of the underlying location assignments and subsequent ad hoc discretisation thereof. We propose a framework to efficiently navigate this space offering improved reconstruction and coverage as well as linear‐time sampling of the ground truth origin‐destination table. This allows us to avoid factorially growing rejection rates and poor summary statistic consistency inherent in discrete choice modelling. We achieve this by introducing joint sampling schemes for the continuous intensity and discrete table of agent trips, as well as Markov bases that can efficiently traverse this combinatorial space subject to summary statistic constraints. Our framework's benefits are demonstrated in multiple controlled experiments and a large‐scale application to agent work trip reconstruction in Cambridge, UK.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Table inference for combinatorial origin‐destination choices in agent‐based population synthesis\",\"authors\":\"Ioannis Zachos, Theodoros Damoulas, Mark Girolami\",\"doi\":\"10.1002/sta4.656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key challenge in agent‐based mobility simulations is the synthesis of individual agent socioeconomic profiles. Such profiles include locations of agent activities, which dictate the quality of the simulated travel patterns. These locations are typically represented in origin‐destination matrices that are sampled using coarse travel surveys. This is because fine‐grained trip profiles are scarce and fragmented due to privacy and cost reasons. The discrepancy between data and sampling resolutions renders agent traits nonidentifiable due to the combinatorial space of data‐consistent individual attributes. This problem is pertinent to any agent‐based inference setting where the latent state is discrete. Existing approaches have used continuous relaxations of the underlying location assignments and subsequent ad hoc discretisation thereof. We propose a framework to efficiently navigate this space offering improved reconstruction and coverage as well as linear‐time sampling of the ground truth origin‐destination table. This allows us to avoid factorially growing rejection rates and poor summary statistic consistency inherent in discrete choice modelling. We achieve this by introducing joint sampling schemes for the continuous intensity and discrete table of agent trips, as well as Markov bases that can efficiently traverse this combinatorial space subject to summary statistic constraints. Our framework's benefits are demonstrated in multiple controlled experiments and a large‐scale application to agent work trip reconstruction in Cambridge, UK.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于代理的移动模拟面临的一个主要挑战是如何综合代理的社会经济概况。这些概况包括代理人的活动地点,这些地点决定了模拟出行模式的质量。这些地点通常在出发地-目的地矩阵中体现,而出发地-目的地矩阵是通过粗略的旅行调查采样得到的。这是因为出于隐私和成本方面的考虑,细粒度的旅行概况非常稀少和分散。由于数据和采样分辨率之间的差异,与数据一致的个体属性的组合空间使得代理特征无法识别。这个问题与潜在状态离散的任何基于代理的推理设置都相关。现有的方法使用了对基础位置分配的连续松弛,以及随后的临时离散化。我们提出了一个框架,可以有效地浏览这个空间,提供更好的重构和覆盖率,并对基本真实的原籍-目的地表进行线性时间采样。这样,我们就能避免离散选择建模中固有的因数增长的拒绝率和较差的汇总统计一致性。为此,我们引入了连续强度和代理行程离散表的联合采样方案,并引入了马尔可夫基(Markov bases),可以在汇总统计约束条件下有效地遍历这一组合空间。我们的框架在多个受控实验和英国剑桥代理人工作行程重建的大规模应用中展示了其优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Table inference for combinatorial origin‐destination choices in agent‐based population synthesis
A key challenge in agent‐based mobility simulations is the synthesis of individual agent socioeconomic profiles. Such profiles include locations of agent activities, which dictate the quality of the simulated travel patterns. These locations are typically represented in origin‐destination matrices that are sampled using coarse travel surveys. This is because fine‐grained trip profiles are scarce and fragmented due to privacy and cost reasons. The discrepancy between data and sampling resolutions renders agent traits nonidentifiable due to the combinatorial space of data‐consistent individual attributes. This problem is pertinent to any agent‐based inference setting where the latent state is discrete. Existing approaches have used continuous relaxations of the underlying location assignments and subsequent ad hoc discretisation thereof. We propose a framework to efficiently navigate this space offering improved reconstruction and coverage as well as linear‐time sampling of the ground truth origin‐destination table. This allows us to avoid factorially growing rejection rates and poor summary statistic consistency inherent in discrete choice modelling. We achieve this by introducing joint sampling schemes for the continuous intensity and discrete table of agent trips, as well as Markov bases that can efficiently traverse this combinatorial space subject to summary statistic constraints. Our framework's benefits are demonstrated in multiple controlled experiments and a large‐scale application to agent work trip reconstruction in Cambridge, UK.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1