{"title":"神经网络驱动的面向边缘云计算的大规模在线音乐教育机制","authors":"Wen Xing, Adam Slowik, J. Dinesh Peter","doi":"10.1186/s13677-023-00555-y","DOIUrl":null,"url":null,"abstract":"With the advent of the big data era, edge cloud computing has developed rapidly. In this era of popular digital music, various technologies have brought great convenience to online music education. But vast databases of digital music prevent educators from making specific-purpose choices. Music recommendation will be a potential development direction for online music education. In this paper, we propose a deep learning model based on multi-source information fusion for music recommendation under the scenario of edge-cloud computing. First, we use the music latent factor vector obtained by the Weighted Matrix Factorization (WMF) algorithm as the ground truth. Second, we build a neural network model to fuse multiple sources of music information, including music spectrum extracted from extra music information to predict the latent spatial features of music. Finally, we predict the user’s preference for music through the inner product of the user vector and the music vector for recommendation. Experimental results on public datasets and real music data collected by edge devices demonstrate the effectiveness of the proposed method in music recommendation.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge-cloud computing oriented large-scale online music education mechanism driven by neural networks\",\"authors\":\"Wen Xing, Adam Slowik, J. Dinesh Peter\",\"doi\":\"10.1186/s13677-023-00555-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of the big data era, edge cloud computing has developed rapidly. In this era of popular digital music, various technologies have brought great convenience to online music education. But vast databases of digital music prevent educators from making specific-purpose choices. Music recommendation will be a potential development direction for online music education. In this paper, we propose a deep learning model based on multi-source information fusion for music recommendation under the scenario of edge-cloud computing. First, we use the music latent factor vector obtained by the Weighted Matrix Factorization (WMF) algorithm as the ground truth. Second, we build a neural network model to fuse multiple sources of music information, including music spectrum extracted from extra music information to predict the latent spatial features of music. Finally, we predict the user’s preference for music through the inner product of the user vector and the music vector for recommendation. Experimental results on public datasets and real music data collected by edge devices demonstrate the effectiveness of the proposed method in music recommendation.\",\"PeriodicalId\":501257,\"journal\":{\"name\":\"Journal of Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13677-023-00555-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-023-00555-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Edge-cloud computing oriented large-scale online music education mechanism driven by neural networks
With the advent of the big data era, edge cloud computing has developed rapidly. In this era of popular digital music, various technologies have brought great convenience to online music education. But vast databases of digital music prevent educators from making specific-purpose choices. Music recommendation will be a potential development direction for online music education. In this paper, we propose a deep learning model based on multi-source information fusion for music recommendation under the scenario of edge-cloud computing. First, we use the music latent factor vector obtained by the Weighted Matrix Factorization (WMF) algorithm as the ground truth. Second, we build a neural network model to fuse multiple sources of music information, including music spectrum extracted from extra music information to predict the latent spatial features of music. Finally, we predict the user’s preference for music through the inner product of the user vector and the music vector for recommendation. Experimental results on public datasets and real music data collected by edge devices demonstrate the effectiveness of the proposed method in music recommendation.