大规模泛癌细胞系筛选确定可操作的有效药物组合。

IF 29.7 1区 医学 Q1 ONCOLOGY Cancer discovery Pub Date : 2024-05-01 DOI:10.1158/2159-8290.CD-23-0388
Azadeh C Bashi, Elizabeth A Coker, Krishna C Bulusu, Patricia Jaaks, Claire Crafter, Howard Lightfoot, Marta Milo, Katrina McCarten, David F Jenkins, Dieudonne van der Meer, James T Lynch, Syd Barthorpe, Courtney L Andersen, Simon T Barry, Alexandra Beck, Justin Cidado, Jacob A Gordon, Caitlin Hall, James Hall, Iman Mali, Tatiana Mironenko, Kevin Mongeon, James Morris, Laura Richardson, Paul D Smith, Omid Tavana, Charlotte Tolley, Frances Thomas, Brandon S Willis, Wanjuan Yang, Mark J O'Connor, Ultan McDermott, Susan E Critchlow, Lisa Drew, Stephen E Fawell, Jerome T Mettetal, Mathew J Garnett
{"title":"大规模泛癌细胞系筛选确定可操作的有效药物组合。","authors":"Azadeh C Bashi, Elizabeth A Coker, Krishna C Bulusu, Patricia Jaaks, Claire Crafter, Howard Lightfoot, Marta Milo, Katrina McCarten, David F Jenkins, Dieudonne van der Meer, James T Lynch, Syd Barthorpe, Courtney L Andersen, Simon T Barry, Alexandra Beck, Justin Cidado, Jacob A Gordon, Caitlin Hall, James Hall, Iman Mali, Tatiana Mironenko, Kevin Mongeon, James Morris, Laura Richardson, Paul D Smith, Omid Tavana, Charlotte Tolley, Frances Thomas, Brandon S Willis, Wanjuan Yang, Mark J O'Connor, Ultan McDermott, Susan E Critchlow, Lisa Drew, Stephen E Fawell, Jerome T Mettetal, Mathew J Garnett","doi":"10.1158/2159-8290.CD-23-0388","DOIUrl":null,"url":null,"abstract":"<p><p>Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific \"emergent\" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets.</p><p><strong>Significance: </strong>We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of \"emergent\" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":null,"pages":null},"PeriodicalIF":29.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061612/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large-scale Pan-cancer Cell Line Screening Identifies Actionable and Effective Drug Combinations.\",\"authors\":\"Azadeh C Bashi, Elizabeth A Coker, Krishna C Bulusu, Patricia Jaaks, Claire Crafter, Howard Lightfoot, Marta Milo, Katrina McCarten, David F Jenkins, Dieudonne van der Meer, James T Lynch, Syd Barthorpe, Courtney L Andersen, Simon T Barry, Alexandra Beck, Justin Cidado, Jacob A Gordon, Caitlin Hall, James Hall, Iman Mali, Tatiana Mironenko, Kevin Mongeon, James Morris, Laura Richardson, Paul D Smith, Omid Tavana, Charlotte Tolley, Frances Thomas, Brandon S Willis, Wanjuan Yang, Mark J O'Connor, Ultan McDermott, Susan E Critchlow, Lisa Drew, Stephen E Fawell, Jerome T Mettetal, Mathew J Garnett\",\"doi\":\"10.1158/2159-8290.CD-23-0388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific \\\"emergent\\\" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets.</p><p><strong>Significance: </strong>We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of \\\"emergent\\\" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":29.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061612/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-23-0388\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-23-0388","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤药物组合可以改善治疗反应,增加患者的治疗选择。可能的联合用药种类繁多,反应也可能因具体情况而异。系统性筛选可以在确定的患者亚型中找出与临床相关的、可操作的组合。我们展示了阿斯利康肿瘤学小分子药物组合在 755 个泛癌细胞系中筛选出的 109 种抗癌药物组合的数据。我们在 7 × 7 的浓度矩阵中筛选了组合药物,并对敏感性进行了 400 多万次测量,从而获得了极其丰富的数据资源。我们采用了一种新方法,利用组合Emax(活力效应)和最高单药(HSA)来评估组合效益。我们设计了一个临床可转化性工作流程,以确定具有明确定义的患者人群、基于肿瘤类型和组合特异性 "突发 "生物标志物的耐受性原理以及与临床剂量相关的暴露的组合。我们介绍了在确定的癌症类型中的三种可行组合,并在体外和体内进行了确认,重点是血液肿瘤和凋亡靶点:我们展示了迄今为止发表的最大规模的抗癌药物组合筛选,在 750 多种细胞系中筛选出 109 种组合的 7 × 7 浓度反应矩阵,并辅以多组学反应预测和 "新兴 "组合生物标志物的鉴定。我们对命中药物进行优先排序,以优化临床可转化性,并对新的组合假设进行实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale Pan-cancer Cell Line Screening Identifies Actionable and Effective Drug Combinations.

Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets.

Significance: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer discovery
Cancer discovery ONCOLOGY-
CiteScore
22.90
自引率
1.40%
发文量
838
审稿时长
6-12 weeks
期刊介绍: Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.
期刊最新文献
Clinical Validation of a Cell-Free DNA Fragmentome Assay for Augmentation of Lung Cancer Early Detection. The N6-methyladenosine Epitranscriptomic Landscape of Lung Adenocarcinoma. Single-Cell View of Tumor Microenvironment Gradients in Pleural Mesothelioma. A Classical Epithelial State Drives Acute Resistance to KRAS Inhibition in Pancreatic Cancer. Mechanisms of Resistance to Oncogenic KRAS Inhibition in Pancreatic Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1