白细胞介素-18 结合蛋白 (IL-18BP):从发现到临床应用的漫长历程。

IF 4.3 4区 医学 Q2 IMMUNOLOGY Immune Network Pub Date : 2024-01-15 eCollection Date: 2024-02-01 DOI:10.4110/in.2024.24.e1
Soohyun Kim, Hyeon Yu, Tania Azam, Charles A Dinarello
{"title":"白细胞介素-18 结合蛋白 (IL-18BP):从发现到临床应用的漫长历程。","authors":"Soohyun Kim, Hyeon Yu, Tania Azam, Charles A Dinarello","doi":"10.4110/in.2024.24.e1","DOIUrl":null,"url":null,"abstract":"<p><p>IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP <i>in vitro</i> and <i>in vivo</i>. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for <i>in vitro</i> and <i>in vivo</i> experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"24 1","pages":"e1"},"PeriodicalIF":4.3000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917572/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application.\",\"authors\":\"Soohyun Kim, Hyeon Yu, Tania Azam, Charles A Dinarello\",\"doi\":\"10.4110/in.2024.24.e1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP <i>in vitro</i> and <i>in vivo</i>. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for <i>in vitro</i> and <i>in vivo</i> experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.</p>\",\"PeriodicalId\":13307,\"journal\":{\"name\":\"Immune Network\",\"volume\":\"24 1\",\"pages\":\"e1\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immune Network\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4110/in.2024.24.e1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immune Network","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4110/in.2024.24.e1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

IL-18 结合蛋白(IL-18BP)最初发现于 1999 年,当时人们试图通过将浓缩的人体尿液置于 IL-18 配体亲和柱中来鉴定 IL-18 受体配体结合链(也称为 IL-18Rα)。通过蛋白质微序列分析了经 IL-18 配体色谱纯化的分子。结果发现了一个新的 40 个氨基酸的多肽。为了分离出完整的开放阅读框(ORF),使用来自新型 IL-18 亲和柱结合分子的 cDNA 探针筛选了各种人类和小鼠 cDNA 文库。鉴定出的整个 ORF 基因被认为是 IL-18Rα 基因。但事实证明,IL-18BP 是一种独特的可溶性拮抗剂,它与多种病毒蛋白具有同源性,与 IL-18Rα 和 IL-18Rβ 链不同。IL-18BP cDNA 被用于生成重组 IL-18BP (rIL-18BP),这对于鉴定 IL-18BP 在体外和体内的作用不可或缺。由于 IL-18BP(约 20 kDa)具有糖基化依赖性活性,因此使用哺乳动物细胞系来生产 rIL-18BP。在体外和体内实验中生产了各种形式的 rIL-18BP,包括完整的、C-端 his-tag 和 Fc 融合蛋白。数据显示,该蛋白能有效中和 IL-18 的活性,有望用于涉及 IL-18 的免疫疾病的临床治疗。然而,尽管自 1999 年发现 IL-18BP 以来已进行了各种临床试验,但从发现到临床应用仍是一个漫长的过程。本综述主要涉及 IL-18BP 的发现以及基础研究如何影响 IL-18BP 的临床开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application.

IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP in vitro and in vivo. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for in vitro and in vivo experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immune Network
Immune Network Immunology and Microbiology-Immunology
CiteScore
2.90
自引率
3.30%
发文量
36
期刊介绍: Immune Network publishes novel findings in basic and clinical immunology and aims to provide a medium through which researchers in various fields of immunology can share and connect. The journal focuses on advances and insights into the regulation of the immune system and the immunological mechanisms of various diseases. Research that provides integrated insights into translational immunology is given preference for publication. All submissions are evaluated based on originality, quality, clarity, and brevity
期刊最新文献
The Role of Inflammasome-Associated Innate Immune Receptors in Cancer. STING-STAT6 Signaling Pathway Promotes IL-4+ and IFN-α+ Fibrotic T Cell Activation and Exacerbates Scleroderma in SKG Mice. Increased Inflammatory Responses in Patients With Active Disseminated Non-Tuberculous Mycobacterial Infection and High Anti-Interferon-Gamma Autoantibodies. Efficient In Vitro Plasma Cell Differentiation by B Cell Receptor Activation and Cytokine Stimulation. Current Developments in NK Cell Engagers for Cancer Immunotherapy: Focus on CD16A and NKp46.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1