Salene A Colombo, Daniela M D de Mello, Bruna R M Morais, Lauranne A Salvato, Fernanda A Dorella, Guilherme C Tavares, Vera M F da Silva, Maria I de Azevedo
{"title":"巴西一项康复计划中的亚马逊海牛(Trichechus inunguis)鼻孔和直肠中真菌微生物群的特征。","authors":"Salene A Colombo, Daniela M D de Mello, Bruna R M Morais, Lauranne A Salvato, Fernanda A Dorella, Guilherme C Tavares, Vera M F da Silva, Maria I de Azevedo","doi":"10.1638/2022-0069","DOIUrl":null,"url":null,"abstract":"<p><p>The present study characterized the filamentous and yeast-like fungal microbiota of the nasal cavity and rectum of Amazonian manatees (<i>Trichechus inunguis</i>) undergoing rehabilitation at the Laboratory of Aquatic Mammals, National Institute of Amazonian Research, Manaus, Amazonas, and determined the antifungal susceptibility of these organisms. Nasal and rectal swabs were collected from 22 calves and three juveniles. The samples were seeded in Sabouraud agar supplemented with chloramphenicol 10%, incubated at 26°C, and observed daily for up to 7 d. The growth of different filamentous and yeast-like fungi was observed among the two anatomical sites. Filamentous fungi were categorized by macro- and microscopic characteristics of the colonies. Representatives of each group were selected for molecular identification based on the internal transcribed spacer region. Yeast identification was performed using MALDI-TOF MS and molecular analyses. Thirteen genera of filamentous fungi and six genera of yeasts were isolated and identified. The dominant filamentous species were <i>Fusarium</i> spp., <i>Aspergillus</i> spp., and <i>Cochliobolus lunatus</i> in the nostril samples and <i>Aspergillus melleus</i> in the rectal samples. <i>Candida</i> was the dominant genus among the identified yeasts at both anatomical sites. In the antifungal susceptibility test, 28 isolates showed resistance to fluconazole (78%), itraconazole (39%), and nystatin (42%). The knowledge of fungal microbiota composition of Amazonian manatees provides information that assists in monitoring the health status of individuals maintained in captivity, as these organisms can behave either as opportunists or as primary pathogens. Moreover, the composition and resistance of these organisms may vary among different rehabilitation institutions or different time frames of search, reinforcing the importance of constant in loco surveillance of these microorganisms. This study provides new perspectives on the fungal diversity in the microbiota of manatees and supports future studies concerning the clinical and epidemiological aspects and the impacts of these agents on the health of Amazonian manatees undergoing rehabilitation.</p>","PeriodicalId":17667,"journal":{"name":"Journal of Zoo and Wildlife Medicine","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHARACTERIZATION OF THE FUNGAL MICROBIOTA IN THE NOSTRILS AND RECTUM OF AMAZONIAN MANATEES (<i>TRICHECHUS INUNGUIS</i>) FROM A REHABILITATION PROGRAM IN BRAZIL.\",\"authors\":\"Salene A Colombo, Daniela M D de Mello, Bruna R M Morais, Lauranne A Salvato, Fernanda A Dorella, Guilherme C Tavares, Vera M F da Silva, Maria I de Azevedo\",\"doi\":\"10.1638/2022-0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study characterized the filamentous and yeast-like fungal microbiota of the nasal cavity and rectum of Amazonian manatees (<i>Trichechus inunguis</i>) undergoing rehabilitation at the Laboratory of Aquatic Mammals, National Institute of Amazonian Research, Manaus, Amazonas, and determined the antifungal susceptibility of these organisms. Nasal and rectal swabs were collected from 22 calves and three juveniles. The samples were seeded in Sabouraud agar supplemented with chloramphenicol 10%, incubated at 26°C, and observed daily for up to 7 d. The growth of different filamentous and yeast-like fungi was observed among the two anatomical sites. Filamentous fungi were categorized by macro- and microscopic characteristics of the colonies. Representatives of each group were selected for molecular identification based on the internal transcribed spacer region. Yeast identification was performed using MALDI-TOF MS and molecular analyses. Thirteen genera of filamentous fungi and six genera of yeasts were isolated and identified. The dominant filamentous species were <i>Fusarium</i> spp., <i>Aspergillus</i> spp., and <i>Cochliobolus lunatus</i> in the nostril samples and <i>Aspergillus melleus</i> in the rectal samples. <i>Candida</i> was the dominant genus among the identified yeasts at both anatomical sites. In the antifungal susceptibility test, 28 isolates showed resistance to fluconazole (78%), itraconazole (39%), and nystatin (42%). The knowledge of fungal microbiota composition of Amazonian manatees provides information that assists in monitoring the health status of individuals maintained in captivity, as these organisms can behave either as opportunists or as primary pathogens. Moreover, the composition and resistance of these organisms may vary among different rehabilitation institutions or different time frames of search, reinforcing the importance of constant in loco surveillance of these microorganisms. This study provides new perspectives on the fungal diversity in the microbiota of manatees and supports future studies concerning the clinical and epidemiological aspects and the impacts of these agents on the health of Amazonian manatees undergoing rehabilitation.</p>\",\"PeriodicalId\":17667,\"journal\":{\"name\":\"Journal of Zoo and Wildlife Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zoo and Wildlife Medicine\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1638/2022-0069\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zoo and Wildlife Medicine","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1638/2022-0069","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
CHARACTERIZATION OF THE FUNGAL MICROBIOTA IN THE NOSTRILS AND RECTUM OF AMAZONIAN MANATEES (TRICHECHUS INUNGUIS) FROM A REHABILITATION PROGRAM IN BRAZIL.
The present study characterized the filamentous and yeast-like fungal microbiota of the nasal cavity and rectum of Amazonian manatees (Trichechus inunguis) undergoing rehabilitation at the Laboratory of Aquatic Mammals, National Institute of Amazonian Research, Manaus, Amazonas, and determined the antifungal susceptibility of these organisms. Nasal and rectal swabs were collected from 22 calves and three juveniles. The samples were seeded in Sabouraud agar supplemented with chloramphenicol 10%, incubated at 26°C, and observed daily for up to 7 d. The growth of different filamentous and yeast-like fungi was observed among the two anatomical sites. Filamentous fungi were categorized by macro- and microscopic characteristics of the colonies. Representatives of each group were selected for molecular identification based on the internal transcribed spacer region. Yeast identification was performed using MALDI-TOF MS and molecular analyses. Thirteen genera of filamentous fungi and six genera of yeasts were isolated and identified. The dominant filamentous species were Fusarium spp., Aspergillus spp., and Cochliobolus lunatus in the nostril samples and Aspergillus melleus in the rectal samples. Candida was the dominant genus among the identified yeasts at both anatomical sites. In the antifungal susceptibility test, 28 isolates showed resistance to fluconazole (78%), itraconazole (39%), and nystatin (42%). The knowledge of fungal microbiota composition of Amazonian manatees provides information that assists in monitoring the health status of individuals maintained in captivity, as these organisms can behave either as opportunists or as primary pathogens. Moreover, the composition and resistance of these organisms may vary among different rehabilitation institutions or different time frames of search, reinforcing the importance of constant in loco surveillance of these microorganisms. This study provides new perspectives on the fungal diversity in the microbiota of manatees and supports future studies concerning the clinical and epidemiological aspects and the impacts of these agents on the health of Amazonian manatees undergoing rehabilitation.
期刊介绍:
The Journal of Zoo and Wildlife Medicine (JZWM) is considered one of the major sources of information on the biology and veterinary aspects in the field. It stems from the founding premise of AAZV to share zoo animal medicine experiences. The Journal evolved from the long history of members producing case reports and the increased publication of free-ranging wildlife papers.
The Journal accepts manuscripts of original research findings, case reports in the field of veterinary medicine dealing with captive and free-ranging wild animals, brief communications regarding clinical or research observations that may warrant publication. It also publishes and encourages submission of relevant editorials, reviews, special reports, clinical challenges, abstracts of selected articles and book reviews. The Journal is published quarterly, is peer reviewed, is indexed by the major abstracting services, and is international in scope and distribution.
Areas of interest include clinical medicine, surgery, anatomy, radiology, physiology, reproduction, nutrition, parasitology, microbiology, immunology, pathology (including infectious diseases and clinical pathology), toxicology, pharmacology, and epidemiology.