Sara Ahmadi Badi, Arian Kariman, Ahmad Bereimipour, Shima Shojaie, Mohammadreza Aghsadeghi, Shohreh Khatami, Andrea Masotti
{"title":"COVID-19感染中微生物群组成改变与免疫系统相关基因之间的关系","authors":"Sara Ahmadi Badi, Arian Kariman, Ahmad Bereimipour, Shima Shojaie, Mohammadreza Aghsadeghi, Shohreh Khatami, Andrea Masotti","doi":"10.1007/s12033-024-01096-8","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiota and immunity affect the host's susceptibility to SARS-CoV-2 infection and the severity of COVID-19. This study aimed to identify significant alterations in the microbiota composition, immune signaling pathways, their potential association, and candidate microRNA in COVID-19 patients using an in silico study model. Enrichment online databases and Python programming were utilized to analyze GSE164805, GSE180594, and GSE182279, as well as NGS data of microbiota composition (PRJNA650244 and PRJNA660302) associated with COVID-19, employing amplicon-based/marker gene sequencing methods. C1, TNF, C2, IL1, and CFH genes were found to have a significant impact on immune signaling pathways. Additionally, we observed a notable decrease in Bacteroides spp. and Faecalibacterium sp., while Escherichia coli, Streptococcus spp., and Akkermansia muciniphila showed increased abundance in COVID-19. Notably, A. muciniphila demonstrated an association with immunity through C1 and TNF, while Faecalibacterium sp. was linked to C2 and IL1. The correlation between E. coli and CFH, as well as IL1 and Streptococcus spp. with C2, was identified. hsa-let-7b-5p was identified as a potential candidate that may be involved in the interaction between the microbiota composition, immune response, and COVID-19. In conclusion, integrative in silico analysis shows that these microbiota members are potentially crucial in the immune responses against COVID-19.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"957-973"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association Between Altered Microbiota Composition and Immune System-Related Genes in COVID-19 Infection.\",\"authors\":\"Sara Ahmadi Badi, Arian Kariman, Ahmad Bereimipour, Shima Shojaie, Mohammadreza Aghsadeghi, Shohreh Khatami, Andrea Masotti\",\"doi\":\"10.1007/s12033-024-01096-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbiota and immunity affect the host's susceptibility to SARS-CoV-2 infection and the severity of COVID-19. This study aimed to identify significant alterations in the microbiota composition, immune signaling pathways, their potential association, and candidate microRNA in COVID-19 patients using an in silico study model. Enrichment online databases and Python programming were utilized to analyze GSE164805, GSE180594, and GSE182279, as well as NGS data of microbiota composition (PRJNA650244 and PRJNA660302) associated with COVID-19, employing amplicon-based/marker gene sequencing methods. C1, TNF, C2, IL1, and CFH genes were found to have a significant impact on immune signaling pathways. Additionally, we observed a notable decrease in Bacteroides spp. and Faecalibacterium sp., while Escherichia coli, Streptococcus spp., and Akkermansia muciniphila showed increased abundance in COVID-19. Notably, A. muciniphila demonstrated an association with immunity through C1 and TNF, while Faecalibacterium sp. was linked to C2 and IL1. The correlation between E. coli and CFH, as well as IL1 and Streptococcus spp. with C2, was identified. hsa-let-7b-5p was identified as a potential candidate that may be involved in the interaction between the microbiota composition, immune response, and COVID-19. In conclusion, integrative in silico analysis shows that these microbiota members are potentially crucial in the immune responses against COVID-19.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"957-973\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-024-01096-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01096-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Association Between Altered Microbiota Composition and Immune System-Related Genes in COVID-19 Infection.
Microbiota and immunity affect the host's susceptibility to SARS-CoV-2 infection and the severity of COVID-19. This study aimed to identify significant alterations in the microbiota composition, immune signaling pathways, their potential association, and candidate microRNA in COVID-19 patients using an in silico study model. Enrichment online databases and Python programming were utilized to analyze GSE164805, GSE180594, and GSE182279, as well as NGS data of microbiota composition (PRJNA650244 and PRJNA660302) associated with COVID-19, employing amplicon-based/marker gene sequencing methods. C1, TNF, C2, IL1, and CFH genes were found to have a significant impact on immune signaling pathways. Additionally, we observed a notable decrease in Bacteroides spp. and Faecalibacterium sp., while Escherichia coli, Streptococcus spp., and Akkermansia muciniphila showed increased abundance in COVID-19. Notably, A. muciniphila demonstrated an association with immunity through C1 and TNF, while Faecalibacterium sp. was linked to C2 and IL1. The correlation between E. coli and CFH, as well as IL1 and Streptococcus spp. with C2, was identified. hsa-let-7b-5p was identified as a potential candidate that may be involved in the interaction between the microbiota composition, immune response, and COVID-19. In conclusion, integrative in silico analysis shows that these microbiota members are potentially crucial in the immune responses against COVID-19.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.