在电纺纳米纤维上同时涂覆生物活性分子,促进体外干细胞成骨。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-01 DOI:10.22074/cellj.2024.2008921.1388
Mehrdad Zahiri-Toosi, Seyed Jalal Zargar, Ehsan Seyedjafari, Mostafa Saberian, Marziehsadat Ahmadi
{"title":"在电纺纳米纤维上同时涂覆生物活性分子,促进体外干细胞成骨。","authors":"Mehrdad Zahiri-Toosi, Seyed Jalal Zargar, Ehsan Seyedjafari, Mostafa Saberian, Marziehsadat Ahmadi","doi":"10.22074/cellj.2024.2008921.1388","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Mesenchymal stem cells (MSCs) are widely recognized as a promising cell type for therapeutic applications due to their ability to secrete and regenerate bioactive molecules. For effective bone healing, it is crucial to select a scaffold that can support, induce, and restore biological function. Evaluating the scaffold should involve assessing MSC survival, proliferation, and differentiation. The principal aim of this investigation was to formulate composite nanofibrous scaffolds apt for applications in bone tissue engineering.</p><p><strong>Materials and methods: </strong>In this experimental study, nanofibrous scaffolds were fabricated using Poly-L-lactic acid (PLLA) polymer. The PLLA fibers' surface was modified by integrating collagen and hydroxyapatite (HA) nanoparticles.</p><p><strong>Results: </strong>The findings demonstrated that the collagen- and nanohydroxyapatite-modified electrospun PLLA scaffold positively influenced the attachment, growth, and osteogenic differentiation of MSCs.</p><p><strong>Conclusion: </strong>Coating the nanofiber scaffold with collagen and nanoparticle HA significantly enhanced the osteogenic differentiation of MSCs on electrospun PLLA scaffolds.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924835/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Coating of Electrospun Nanofibers with Bioactive Molecules for Stem Cell Osteogenesis <i>In Vitro</i>.\",\"authors\":\"Mehrdad Zahiri-Toosi, Seyed Jalal Zargar, Ehsan Seyedjafari, Mostafa Saberian, Marziehsadat Ahmadi\",\"doi\":\"10.22074/cellj.2024.2008921.1388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Mesenchymal stem cells (MSCs) are widely recognized as a promising cell type for therapeutic applications due to their ability to secrete and regenerate bioactive molecules. For effective bone healing, it is crucial to select a scaffold that can support, induce, and restore biological function. Evaluating the scaffold should involve assessing MSC survival, proliferation, and differentiation. The principal aim of this investigation was to formulate composite nanofibrous scaffolds apt for applications in bone tissue engineering.</p><p><strong>Materials and methods: </strong>In this experimental study, nanofibrous scaffolds were fabricated using Poly-L-lactic acid (PLLA) polymer. The PLLA fibers' surface was modified by integrating collagen and hydroxyapatite (HA) nanoparticles.</p><p><strong>Results: </strong>The findings demonstrated that the collagen- and nanohydroxyapatite-modified electrospun PLLA scaffold positively influenced the attachment, growth, and osteogenic differentiation of MSCs.</p><p><strong>Conclusion: </strong>Coating the nanofiber scaffold with collagen and nanoparticle HA significantly enhanced the osteogenic differentiation of MSCs on electrospun PLLA scaffolds.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924835/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.22074/cellj.2024.2008921.1388\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.22074/cellj.2024.2008921.1388","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:间充质干细胞(MSCs)具有分泌和再生生物活性分子的能力,因此被广泛认为是一种具有治疗应用前景的细胞类型。要实现有效的骨愈合,选择一种能支持、诱导和恢复生物功能的支架至关重要。评估支架应包括评估间充质干细胞的存活、增殖和分化。本研究的主要目的是制备适合骨组织工程应用的复合纳米纤维支架:在这项实验研究中,使用聚左旋乳酸(PLLA)聚合物制作了纳米纤维支架。结果表明,胶原-L-乳酸(PLLA)和羟基磷灰石(HA)纳米颗粒的结合对 PLLA 纤维的表面进行了修饰:结果:研究结果表明,胶原和纳米羟基磷灰石修饰的电纺聚乳酸支架对间叶干细胞的附着、生长和成骨分化有积极影响:结论:在纳米纤维支架上涂覆胶原蛋白和纳米羟基磷灰石能显著提高间充质干细胞在电纺聚乳酸支架上的成骨分化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous Coating of Electrospun Nanofibers with Bioactive Molecules for Stem Cell Osteogenesis In Vitro.

Objective: Mesenchymal stem cells (MSCs) are widely recognized as a promising cell type for therapeutic applications due to their ability to secrete and regenerate bioactive molecules. For effective bone healing, it is crucial to select a scaffold that can support, induce, and restore biological function. Evaluating the scaffold should involve assessing MSC survival, proliferation, and differentiation. The principal aim of this investigation was to formulate composite nanofibrous scaffolds apt for applications in bone tissue engineering.

Materials and methods: In this experimental study, nanofibrous scaffolds were fabricated using Poly-L-lactic acid (PLLA) polymer. The PLLA fibers' surface was modified by integrating collagen and hydroxyapatite (HA) nanoparticles.

Results: The findings demonstrated that the collagen- and nanohydroxyapatite-modified electrospun PLLA scaffold positively influenced the attachment, growth, and osteogenic differentiation of MSCs.

Conclusion: Coating the nanofiber scaffold with collagen and nanoparticle HA significantly enhanced the osteogenic differentiation of MSCs on electrospun PLLA scaffolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1