Besma Smida;Risto Wichman;Kenneth E. Kolodziej;Himal A. Suraweera;Taneli Riihonen;Ashutosh Sabharwal
{"title":"带内全双工:物理层","authors":"Besma Smida;Risto Wichman;Kenneth E. Kolodziej;Himal A. Suraweera;Taneli Riihonen;Ashutosh Sabharwal","doi":"10.1109/JPROC.2024.3366768","DOIUrl":null,"url":null,"abstract":"In this article, we review the key concepts and the progress in the design of physical-layer aspects of in-band full-duplex (IBFD) communications. One of the fundamental challenges in realizing IBFD is self-interference that can be up to 100 dB stronger than signals of interest. Thus, we start by reviewing state-of-the-art research in self-interference cancellation, addressing both model-based and emerging machine learning-based methods. Then, we turn our attention to new wireless systems with many degrees of freedom for which the traditional IBFD designs do not gracefully scale and, hence, require many innovations to enable IBFD. We provide an extensive review of basic concepts and state of the art in massive multiple-input–multiple-output IBFD. Then, we consider the mmWave band IBFD and review advanced physical-layer architectures. The above review provides the proper context to discuss IBFD innovations and new challenges for sixth-generation networks and beyond, where wireless networks are envisioned to be multifunctional, combining communications with functions such as sensing, cognitive radios, physical-layer security, and wireless power transfer. We conclude this article with a status update on the adoption of IBFD in communication standards.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 5","pages":"433-462"},"PeriodicalIF":23.2000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Band Full-Duplex: The Physical Layer\",\"authors\":\"Besma Smida;Risto Wichman;Kenneth E. Kolodziej;Himal A. Suraweera;Taneli Riihonen;Ashutosh Sabharwal\",\"doi\":\"10.1109/JPROC.2024.3366768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we review the key concepts and the progress in the design of physical-layer aspects of in-band full-duplex (IBFD) communications. One of the fundamental challenges in realizing IBFD is self-interference that can be up to 100 dB stronger than signals of interest. Thus, we start by reviewing state-of-the-art research in self-interference cancellation, addressing both model-based and emerging machine learning-based methods. Then, we turn our attention to new wireless systems with many degrees of freedom for which the traditional IBFD designs do not gracefully scale and, hence, require many innovations to enable IBFD. We provide an extensive review of basic concepts and state of the art in massive multiple-input–multiple-output IBFD. Then, we consider the mmWave band IBFD and review advanced physical-layer architectures. The above review provides the proper context to discuss IBFD innovations and new challenges for sixth-generation networks and beyond, where wireless networks are envisioned to be multifunctional, combining communications with functions such as sensing, cognitive radios, physical-layer security, and wireless power transfer. We conclude this article with a status update on the adoption of IBFD in communication standards.\",\"PeriodicalId\":20556,\"journal\":{\"name\":\"Proceedings of the IEEE\",\"volume\":\"112 5\",\"pages\":\"433-462\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10463523/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10463523/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
In this article, we review the key concepts and the progress in the design of physical-layer aspects of in-band full-duplex (IBFD) communications. One of the fundamental challenges in realizing IBFD is self-interference that can be up to 100 dB stronger than signals of interest. Thus, we start by reviewing state-of-the-art research in self-interference cancellation, addressing both model-based and emerging machine learning-based methods. Then, we turn our attention to new wireless systems with many degrees of freedom for which the traditional IBFD designs do not gracefully scale and, hence, require many innovations to enable IBFD. We provide an extensive review of basic concepts and state of the art in massive multiple-input–multiple-output IBFD. Then, we consider the mmWave band IBFD and review advanced physical-layer architectures. The above review provides the proper context to discuss IBFD innovations and new challenges for sixth-generation networks and beyond, where wireless networks are envisioned to be multifunctional, combining communications with functions such as sensing, cognitive radios, physical-layer security, and wireless power transfer. We conclude this article with a status update on the adoption of IBFD in communication standards.
期刊介绍:
Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.