Anatolii Abalymov PhD , Maxim A. Kurochkin PhD , Sergei German PhD , Aleksei Komlev MSc , Evgeny S. Vavaev MSc , Evgeny V. Lyubin PhD , Andrey A. Fedyanin DSc (Habilitation) , Dmitry Gorin DSc , Marina Novoselova PhD
{"title":"利用电磁镊子对通过纳米复合胶囊靶向的 T 淋巴细胞进行功能化和磁导航。","authors":"Anatolii Abalymov PhD , Maxim A. Kurochkin PhD , Sergei German PhD , Aleksei Komlev MSc , Evgeny S. Vavaev MSc , Evgeny V. Lyubin PhD , Andrey A. Fedyanin DSc (Habilitation) , Dmitry Gorin DSc , Marina Novoselova PhD","doi":"10.1016/j.nano.2024.102742","DOIUrl":null,"url":null,"abstract":"<div><p>Modification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers. T-cells were modified with the following magnetic capsules: Parg/DEX (150 nm), BSA/TA (300 nm), and BSA/TA (500 nm). T-cells were magnetonavigated in a phantom blood vessel capillary in cultural medium and in whole blood. The permeability of tumor tissues to captured T-cells was analyzed by magnetic delivery of modified T-cells to spheroids formed from 4T1 breast cancer cells. The dynamics of T-cell motion under a magnetic field gradient in model environments were analyzed by particle image velocimetry. The magnetic properties of the nanocomposite capsules and magnetic T-cells were measured. The obtained results are promising for biomedical applications in cancer immunotherapy.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalization and magnetonavigation of T-lymphocytes functionalized via nanocomposite capsules targeting with electromagnetic tweezers\",\"authors\":\"Anatolii Abalymov PhD , Maxim A. Kurochkin PhD , Sergei German PhD , Aleksei Komlev MSc , Evgeny S. Vavaev MSc , Evgeny V. Lyubin PhD , Andrey A. Fedyanin DSc (Habilitation) , Dmitry Gorin DSc , Marina Novoselova PhD\",\"doi\":\"10.1016/j.nano.2024.102742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers. T-cells were modified with the following magnetic capsules: Parg/DEX (150 nm), BSA/TA (300 nm), and BSA/TA (500 nm). T-cells were magnetonavigated in a phantom blood vessel capillary in cultural medium and in whole blood. The permeability of tumor tissues to captured T-cells was analyzed by magnetic delivery of modified T-cells to spheroids formed from 4T1 breast cancer cells. The dynamics of T-cell motion under a magnetic field gradient in model environments were analyzed by particle image velocimetry. The magnetic properties of the nanocomposite capsules and magnetic T-cells were measured. The obtained results are promising for biomedical applications in cancer immunotherapy.</p></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S154996342400011X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S154996342400011X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
对 T 淋巴细胞进行改造,使其能够进行细胞旁转移,是现代个性化医疗的一个大有可为的趋势。然而,如何将所需浓度的功能化 T 细胞输送到靶组织仍是一个问题。我们介绍了一种用磁性纳米胶囊功能化 T 细胞并用电磁镊瞄准它们的新方法。我们用以下磁性胶囊修饰了 T 细胞:Parg/DEX(150 nm)、BSA/TA(300 nm)和 BSA/TA(500 nm)。T 细胞在培养基和全血中的模型血管毛细管中进行磁导航。通过将修饰的 T 细胞磁性输送到由 4T1 乳腺癌细胞形成的球形组织,分析了肿瘤组织对捕获的 T 细胞的渗透性。利用粒子图像测速仪分析了模型环境中磁场梯度下 T 细胞的运动动态。还测量了纳米复合胶囊和磁性 T 细胞的磁性能。研究结果有望应用于癌症免疫治疗的生物医学领域。
Functionalization and magnetonavigation of T-lymphocytes functionalized via nanocomposite capsules targeting with electromagnetic tweezers
Modification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers. T-cells were modified with the following magnetic capsules: Parg/DEX (150 nm), BSA/TA (300 nm), and BSA/TA (500 nm). T-cells were magnetonavigated in a phantom blood vessel capillary in cultural medium and in whole blood. The permeability of tumor tissues to captured T-cells was analyzed by magnetic delivery of modified T-cells to spheroids formed from 4T1 breast cancer cells. The dynamics of T-cell motion under a magnetic field gradient in model environments were analyzed by particle image velocimetry. The magnetic properties of the nanocomposite capsules and magnetic T-cells were measured. The obtained results are promising for biomedical applications in cancer immunotherapy.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.