Aryssa Simpson, Abhichart Krissanaprasit, Daniel Chester, Cynthia Koehler, Thomas H LaBean, Ashley C Brown
{"title":"利用多尺度工程生物材料研究 TGF-β 介导的肌成纤维细胞分化。","authors":"Aryssa Simpson, Abhichart Krissanaprasit, Daniel Chester, Cynthia Koehler, Thomas H LaBean, Ashley C Brown","doi":"10.1111/wrr.13168","DOIUrl":null,"url":null,"abstract":"<p><p>Cells integrate many mechanical and chemical cues to drive cell signalling responses. Because of the complex nature and interdependency of alterations in extracellular matrix (ECM) composition, ligand density, mechanics, and cellular responses it is difficult to tease out individual and combinatorial contributions of these various factors in driving cell behavior in homeostasis and disease. Tuning of material viscous and elastic properties, and ligand densities, in combinatorial fashions would enhance our understanding of how cells process complex signals. For example, it is known that increased ECM mechanics and transforming growth factor beta (TGF-β) receptor (TGF-β-R) spacing/clustering independently drive TGF-β signalling and associated myofibroblastic differentiation. However, it remains unknown how these inputs orthogonally contribute to cellular outcomes. Here, we describe the development of a novel material platform that combines microgel thin films with controllable viscoelastic properties and DNA origami to probe how viscoelastic properties and nanoscale spacing of TGF-β-Rs contribute to TGF-β signalling and myofibroblastic differentiation. We found that highly viscous materials with non-fixed TGF-β-R spacing promoted increased TGF-β signalling and myofibroblastic differentiation. This is likely due to the ability of cells to better cluster receptors on these surfaces. These results provide insight into the contribution of substrate properties and receptor localisation on downstream signalling. Future studies allow for exploration into other receptor-mediated processes.</p>","PeriodicalId":23864,"journal":{"name":"Wound Repair and Regeneration","volume":" ","pages":"234-245"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111354/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilizing multiscale engineered biomaterials to examine TGF-β-mediated myofibroblastic differentiation.\",\"authors\":\"Aryssa Simpson, Abhichart Krissanaprasit, Daniel Chester, Cynthia Koehler, Thomas H LaBean, Ashley C Brown\",\"doi\":\"10.1111/wrr.13168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells integrate many mechanical and chemical cues to drive cell signalling responses. Because of the complex nature and interdependency of alterations in extracellular matrix (ECM) composition, ligand density, mechanics, and cellular responses it is difficult to tease out individual and combinatorial contributions of these various factors in driving cell behavior in homeostasis and disease. Tuning of material viscous and elastic properties, and ligand densities, in combinatorial fashions would enhance our understanding of how cells process complex signals. For example, it is known that increased ECM mechanics and transforming growth factor beta (TGF-β) receptor (TGF-β-R) spacing/clustering independently drive TGF-β signalling and associated myofibroblastic differentiation. However, it remains unknown how these inputs orthogonally contribute to cellular outcomes. Here, we describe the development of a novel material platform that combines microgel thin films with controllable viscoelastic properties and DNA origami to probe how viscoelastic properties and nanoscale spacing of TGF-β-Rs contribute to TGF-β signalling and myofibroblastic differentiation. We found that highly viscous materials with non-fixed TGF-β-R spacing promoted increased TGF-β signalling and myofibroblastic differentiation. This is likely due to the ability of cells to better cluster receptors on these surfaces. These results provide insight into the contribution of substrate properties and receptor localisation on downstream signalling. Future studies allow for exploration into other receptor-mediated processes.</p>\",\"PeriodicalId\":23864,\"journal\":{\"name\":\"Wound Repair and Regeneration\",\"volume\":\" \",\"pages\":\"234-245\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111354/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wound Repair and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/wrr.13168\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wound Repair and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/wrr.13168","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Utilizing multiscale engineered biomaterials to examine TGF-β-mediated myofibroblastic differentiation.
Cells integrate many mechanical and chemical cues to drive cell signalling responses. Because of the complex nature and interdependency of alterations in extracellular matrix (ECM) composition, ligand density, mechanics, and cellular responses it is difficult to tease out individual and combinatorial contributions of these various factors in driving cell behavior in homeostasis and disease. Tuning of material viscous and elastic properties, and ligand densities, in combinatorial fashions would enhance our understanding of how cells process complex signals. For example, it is known that increased ECM mechanics and transforming growth factor beta (TGF-β) receptor (TGF-β-R) spacing/clustering independently drive TGF-β signalling and associated myofibroblastic differentiation. However, it remains unknown how these inputs orthogonally contribute to cellular outcomes. Here, we describe the development of a novel material platform that combines microgel thin films with controllable viscoelastic properties and DNA origami to probe how viscoelastic properties and nanoscale spacing of TGF-β-Rs contribute to TGF-β signalling and myofibroblastic differentiation. We found that highly viscous materials with non-fixed TGF-β-R spacing promoted increased TGF-β signalling and myofibroblastic differentiation. This is likely due to the ability of cells to better cluster receptors on these surfaces. These results provide insight into the contribution of substrate properties and receptor localisation on downstream signalling. Future studies allow for exploration into other receptor-mediated processes.
期刊介绍:
Wound Repair and Regeneration provides extensive international coverage of cellular and molecular biology, connective tissue, and biological mediator studies in the field of tissue repair and regeneration and serves a diverse audience of surgeons, plastic surgeons, dermatologists, biochemists, cell biologists, and others.
Wound Repair and Regeneration is the official journal of The Wound Healing Society, The European Tissue Repair Society, The Japanese Society for Wound Healing, and The Australian Wound Management Association.