Ali Qubian, Mohammed Ahmad Zekraoui, Sina Mohajeri, Emad Mortezazadeh, Reza Eslahi, Maryam Bakhtiari, Abrar Al Dabbous, Asma Al Sagheer, Ali Alizadeh, Mostafa Zeinali
{"title":"具有生产能力的高效人工智能-物理混合模型,可缩短历史匹配和情景评估时间;案例研究:米纳吉什油田","authors":"Ali Qubian, Mohammed Ahmad Zekraoui, Sina Mohajeri, Emad Mortezazadeh, Reza Eslahi, Maryam Bakhtiari, Abrar Al Dabbous, Asma Al Sagheer, Ali Alizadeh, Mostafa Zeinali","doi":"10.1080/10916466.2024.2324818","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel approach that combines physics-based numerical simulation with deep-learning neural networks to create an AI-Physics hybrid model for reservoir simulation. Our primary o...","PeriodicalId":19888,"journal":{"name":"Petroleum Science and Technology","volume":"25 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient AI-Physics hybrid model with productive capabilities to reduce the time of history matching and scenario assessment; a case study: Minagish oil field\",\"authors\":\"Ali Qubian, Mohammed Ahmad Zekraoui, Sina Mohajeri, Emad Mortezazadeh, Reza Eslahi, Maryam Bakhtiari, Abrar Al Dabbous, Asma Al Sagheer, Ali Alizadeh, Mostafa Zeinali\",\"doi\":\"10.1080/10916466.2024.2324818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel approach that combines physics-based numerical simulation with deep-learning neural networks to create an AI-Physics hybrid model for reservoir simulation. Our primary o...\",\"PeriodicalId\":19888,\"journal\":{\"name\":\"Petroleum Science and Technology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10916466.2024.2324818\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10916466.2024.2324818","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Efficient AI-Physics hybrid model with productive capabilities to reduce the time of history matching and scenario assessment; a case study: Minagish oil field
This paper proposes a novel approach that combines physics-based numerical simulation with deep-learning neural networks to create an AI-Physics hybrid model for reservoir simulation. Our primary o...
期刊介绍:
The international journal of Petroleum Science and Technology publishes original, high-quality peer-reviewed research and review articles that explore:
-The fundamental science of fluid-fluid and rock-fluids interactions and multi-phase interfacial and transport phenomena through porous media related to advanced petroleum recovery processes,
-The application of novel concepts and processes for enhancing recovery of subsurface energy resources in a carbon-sensitive manner,
-Case studies of scaling up the laboratory research findings to field pilots and field-wide applications.
-Other salient technological challenges facing the petroleum industry.