非稳态环境下流式数据分类的在线学习

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Statistical Analysis and Data Mining Pub Date : 2024-03-09 DOI:10.1002/sam.11669
Yujie Gai, Kang Meng, Xiaodi Wang
{"title":"非稳态环境下流式数据分类的在线学习","authors":"Yujie Gai, Kang Meng, Xiaodi Wang","doi":"10.1002/sam.11669","DOIUrl":null,"url":null,"abstract":"In this article, we implement the classification of nonstationary streaming data. Due to the inability to obtain full data in the context of streaming data, we adopt a strategy based on clustering structure for data classification. Specifically, this strategy involves dynamically maintaining clustering structures to update the model, thereby updating the objective function for classification. Simultaneously, incoming samples are monitored in real-time to identify the emergence of new classes or the presence of outliers. Moreover, this strategy can also deal with the concept drift problem, where the distribution of data changes with the inflow of data. Regarding the handling of novel instances, we introduce a buffer analysis mechanism to delay their processing, which in turn improves the prediction performance of the model. In the process of model updating, we also introduce a novel renewable strategy for the covariance matrix. Numerical simulations and experiments on datasets show that our method has significant advantages.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online learning for streaming data classification in nonstationary environments\",\"authors\":\"Yujie Gai, Kang Meng, Xiaodi Wang\",\"doi\":\"10.1002/sam.11669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we implement the classification of nonstationary streaming data. Due to the inability to obtain full data in the context of streaming data, we adopt a strategy based on clustering structure for data classification. Specifically, this strategy involves dynamically maintaining clustering structures to update the model, thereby updating the objective function for classification. Simultaneously, incoming samples are monitored in real-time to identify the emergence of new classes or the presence of outliers. Moreover, this strategy can also deal with the concept drift problem, where the distribution of data changes with the inflow of data. Regarding the handling of novel instances, we introduce a buffer analysis mechanism to delay their processing, which in turn improves the prediction performance of the model. In the process of model updating, we also introduce a novel renewable strategy for the covariance matrix. Numerical simulations and experiments on datasets show that our method has significant advantages.\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11669\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11669","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们实现了对非平稳流数据的分类。由于无法获得流数据的完整数据,我们采用了基于聚类结构的数据分类策略。具体来说,该策略包括动态维护聚类结构以更新模型,从而更新分类的目标函数。与此同时,对输入样本进行实时监控,以识别新类别的出现或异常值的存在。此外,这种策略还能处理概念漂移问题,即数据的分布会随着数据的流入而发生变化。关于新实例的处理,我们引入了一种缓冲分析机制,以延迟其处理时间,从而提高模型的预测性能。在模型更新过程中,我们还引入了一种新的协方差矩阵可再生策略。数值模拟和数据集实验表明,我们的方法具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online learning for streaming data classification in nonstationary environments
In this article, we implement the classification of nonstationary streaming data. Due to the inability to obtain full data in the context of streaming data, we adopt a strategy based on clustering structure for data classification. Specifically, this strategy involves dynamically maintaining clustering structures to update the model, thereby updating the objective function for classification. Simultaneously, incoming samples are monitored in real-time to identify the emergence of new classes or the presence of outliers. Moreover, this strategy can also deal with the concept drift problem, where the distribution of data changes with the inflow of data. Regarding the handling of novel instances, we introduce a buffer analysis mechanism to delay their processing, which in turn improves the prediction performance of the model. In the process of model updating, we also introduce a novel renewable strategy for the covariance matrix. Numerical simulations and experiments on datasets show that our method has significant advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
期刊最新文献
Quantifying Epistemic Uncertainty in Binary Classification via Accuracy Gain A new logarithmic multiplicative distortion for correlation analysis Revisiting Winnow: A modified online feature selection algorithm for efficient binary classification A random forest approach for interval selection in functional regression Characterizing climate pathways using feature importance on echo state networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1