{"title":"斯塔克尔伯格-帕雷托综合法","authors":"Véronique Bruyère, Baptiste Fievet, Jean-François Raskin, Clément Tamines","doi":"10.1145/3651162","DOIUrl":null,"url":null,"abstract":"<p>We study the framework of two-player Stackelberg games played on graphs in which Player 0 announces a strategy and Player 1 responds rationally with a strategy that is an optimal response. While it is usually assumed that Player 1 has a single objective, we consider here the new setting where he has several. In this context, after responding with his strategy, Player 1 gets a payoff in the form of a vector of Booleans corresponding to his satisfied objectives. Rationality of Player 1 is encoded by the fact that his response must produce a Pareto-optimal payoff given the strategy of Player 0. We study for several kinds of <i>ω</i>-regular objectives the Stackelberg-Pareto Synthesis problem which asks whether Player 0 can announce a strategy which satisfies his objective, whatever the rational response of Player 1. We show that this problem is fixed-parameter tractable for games in which objectives are all reachability, safety, Büchi, co-Büchi, Boolean Büchi, parity, Muller, Streett or Rabin objectives. We also show that this problem is \\(\\mathsf {NEXPTIME} \\)-complete except for the cases of Büchi objectives for which it is \\(\\mathsf {NP} \\)-complete and co-Büchi objectives for which it is in \\(\\mathsf {NEXPTIME} \\) and \\(\\mathsf {NP} \\)-hard. The problem is already \\(\\mathsf {NP} \\)-complete in the simple case of reachability objectives and graphs that are trees.</p>","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stackelberg-Pareto Synthesis\",\"authors\":\"Véronique Bruyère, Baptiste Fievet, Jean-François Raskin, Clément Tamines\",\"doi\":\"10.1145/3651162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the framework of two-player Stackelberg games played on graphs in which Player 0 announces a strategy and Player 1 responds rationally with a strategy that is an optimal response. While it is usually assumed that Player 1 has a single objective, we consider here the new setting where he has several. In this context, after responding with his strategy, Player 1 gets a payoff in the form of a vector of Booleans corresponding to his satisfied objectives. Rationality of Player 1 is encoded by the fact that his response must produce a Pareto-optimal payoff given the strategy of Player 0. We study for several kinds of <i>ω</i>-regular objectives the Stackelberg-Pareto Synthesis problem which asks whether Player 0 can announce a strategy which satisfies his objective, whatever the rational response of Player 1. We show that this problem is fixed-parameter tractable for games in which objectives are all reachability, safety, Büchi, co-Büchi, Boolean Büchi, parity, Muller, Streett or Rabin objectives. We also show that this problem is \\\\(\\\\mathsf {NEXPTIME} \\\\)-complete except for the cases of Büchi objectives for which it is \\\\(\\\\mathsf {NP} \\\\)-complete and co-Büchi objectives for which it is in \\\\(\\\\mathsf {NEXPTIME} \\\\) and \\\\(\\\\mathsf {NP} \\\\)-hard. The problem is already \\\\(\\\\mathsf {NP} \\\\)-complete in the simple case of reachability objectives and graphs that are trees.</p>\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3651162\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3651162","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We study the framework of two-player Stackelberg games played on graphs in which Player 0 announces a strategy and Player 1 responds rationally with a strategy that is an optimal response. While it is usually assumed that Player 1 has a single objective, we consider here the new setting where he has several. In this context, after responding with his strategy, Player 1 gets a payoff in the form of a vector of Booleans corresponding to his satisfied objectives. Rationality of Player 1 is encoded by the fact that his response must produce a Pareto-optimal payoff given the strategy of Player 0. We study for several kinds of ω-regular objectives the Stackelberg-Pareto Synthesis problem which asks whether Player 0 can announce a strategy which satisfies his objective, whatever the rational response of Player 1. We show that this problem is fixed-parameter tractable for games in which objectives are all reachability, safety, Büchi, co-Büchi, Boolean Büchi, parity, Muller, Streett or Rabin objectives. We also show that this problem is \(\mathsf {NEXPTIME} \)-complete except for the cases of Büchi objectives for which it is \(\mathsf {NP} \)-complete and co-Büchi objectives for which it is in \(\mathsf {NEXPTIME} \) and \(\mathsf {NP} \)-hard. The problem is already \(\mathsf {NP} \)-complete in the simple case of reachability objectives and graphs that are trees.
期刊介绍:
TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI).
Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages.
The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field.
Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.