{"title":"基于视觉图像脑电信号的多字符分类方案的设计与实现","authors":"Hongguang Pan, Wei Song, Li Li, Xuebin Qin","doi":"10.1007/s11571-024-10087-z","DOIUrl":null,"url":null,"abstract":"<p>In visual-imagery-based brain–computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks. Secondly, tensor data is obtained by the Morlet wavelet transform, and a feature extraction algorithm based on tensor—uncorrelated multilinear principal component analysis is used to extract high-quality features. Finally, three classifiers, namely support vector machine, K-nearest neighbor, and extreme learning machine, are employed for classifying multi-character, and the results are compared. The experimental results demonstrate that, the proposed scheme effectively extracts character features with minimal redundancy, weak correlation, and strong representation capability, and successfully achieves an average classification accuracy 97.59% for 29 characters, surpassing existing research in terms of both accuracy and quantity of classification. The present study designs a new paradigm for acquiring EEG signals of VI, and combines the Morlet wavelet transform and UMPCA algorithm to extract the character features, enabling multi-character classification in various classifiers. This research paves a novel pathway for establishing direct brain-to-world communication.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"54 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The design and implementation of multi-character classification scheme based on EEG signals of visual imagery\",\"authors\":\"Hongguang Pan, Wei Song, Li Li, Xuebin Qin\",\"doi\":\"10.1007/s11571-024-10087-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In visual-imagery-based brain–computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks. Secondly, tensor data is obtained by the Morlet wavelet transform, and a feature extraction algorithm based on tensor—uncorrelated multilinear principal component analysis is used to extract high-quality features. Finally, three classifiers, namely support vector machine, K-nearest neighbor, and extreme learning machine, are employed for classifying multi-character, and the results are compared. The experimental results demonstrate that, the proposed scheme effectively extracts character features with minimal redundancy, weak correlation, and strong representation capability, and successfully achieves an average classification accuracy 97.59% for 29 characters, surpassing existing research in terms of both accuracy and quantity of classification. The present study designs a new paradigm for acquiring EEG signals of VI, and combines the Morlet wavelet transform and UMPCA algorithm to extract the character features, enabling multi-character classification in various classifiers. This research paves a novel pathway for establishing direct brain-to-world communication.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10087-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10087-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
在基于视觉意象的脑机接口(VI-BCI)中,存在想象任务单一、特征信息描述不足等问题,严重阻碍了VI-BCI技术在恢复交流领域的发展和应用。本文设计并优化了一种基于视觉意象(VI)脑电图(EEG)信号的多字符分类方案,用于对包括 26 个小写英文字母和 3 个标点符号在内的 29 个字符进行分类。首先,设计了一种随机呈现字符并包括准备阶段的新范例来获取脑电信号并构建多字符数据集,从而消除了 VI 任务之间的影响。其次,通过 Morlet 小波变换获得张量数据,并使用基于张量非相关多线性主成分分析的特征提取算法提取高质量特征。最后,采用支持向量机、K-近邻和极端学习机三种分类器对多字符进行分类,并对结果进行比较。实验结果表明,所提出的方案有效地提取了冗余度小、相关性弱、表示能力强的字符特征,并成功实现了 29 个字符的平均分类准确率 97.59%,在分类准确率和分类数量上都超越了现有研究。本研究设计了一种获取 VI 脑电信号的新范式,并结合 Morlet 小波变换和 UMPCA 算法提取字符特征,实现了多种分类器的多字符分类。这项研究为建立大脑与世界的直接交流铺平了新的道路。
The design and implementation of multi-character classification scheme based on EEG signals of visual imagery
In visual-imagery-based brain–computer interface (VI-BCI), there are problems of singleness of imagination task and insufficient description of feature information, which seriously hinder the development and application of VI-BCI technology in the field of restoring communication. In this paper, we design and optimize a multi-character classification scheme based on electroencephalogram (EEG) signals of visual imagery (VI), which is used to classify 29 characters including 26 lowercase English letters and three punctuation marks. Firstly, a new paradigm of randomly presenting characters and including preparation stage is designed to acquire EEG signals and construct a multi-character dataset, which can eliminate the influence between VI tasks. Secondly, tensor data is obtained by the Morlet wavelet transform, and a feature extraction algorithm based on tensor—uncorrelated multilinear principal component analysis is used to extract high-quality features. Finally, three classifiers, namely support vector machine, K-nearest neighbor, and extreme learning machine, are employed for classifying multi-character, and the results are compared. The experimental results demonstrate that, the proposed scheme effectively extracts character features with minimal redundancy, weak correlation, and strong representation capability, and successfully achieves an average classification accuracy 97.59% for 29 characters, surpassing existing research in terms of both accuracy and quantity of classification. The present study designs a new paradigm for acquiring EEG signals of VI, and combines the Morlet wavelet transform and UMPCA algorithm to extract the character features, enabling multi-character classification in various classifiers. This research paves a novel pathway for establishing direct brain-to-world communication.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.