{"title":"无人机-TB 辅助战场网络平台中基于游戏的协同任务卸载方案","authors":"Sungwook Kim","doi":"10.1186/s13638-024-02337-9","DOIUrl":null,"url":null,"abstract":"<p>In the sixth-generation (6G) wireless networks, the use of unmanned aerial vehicles (UAVs) and tethered balloons (TBs) to assist cellular networks has attracted considerable attentions due to their dynamic and quick deployment with their relative low cost. In this article, we propose a new task offloading scheme for smart devices in the modern battlefield area. By the integrative platform of TBs, UAVs and smart devices, the main challenges are (i) providing a task splitting algorithm for the partial offloading service, and (ii) develop a TB resource sharing algorithm to handle the offloading requests. For convenient wireless communications, UAVs work as relay nodes between TBs and individual devices. To achieve a mutually desirable solution, our proposed scheme is formulated as cooperative game models. First, the <i>sequential Raiffa bargaining solution</i> is applied to split the computation-intensive task of each smart device in the battlefield area. Second, the <i>average-surplus value</i> is adopted to effectively share the TB computing resource. Based on the reciprocal combination of two cooperative game solutions, we explore the sequential interaction of TBs, UAVs and battlefield devices, and jointly design our integrated control scheme for offloading services. According to the synergy effect, our hybrid approach can provide a fair-efficient solution in the UAV-TB-assisted battlefield network infrastructure. Finally, extensive simulations are conducted, and the results demonstrate the superiority of our proposed scheme over the existing baseline protocols.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"65 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative game-based task offloading scheme in the UAV-TB-assisted battlefield network platform\",\"authors\":\"Sungwook Kim\",\"doi\":\"10.1186/s13638-024-02337-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the sixth-generation (6G) wireless networks, the use of unmanned aerial vehicles (UAVs) and tethered balloons (TBs) to assist cellular networks has attracted considerable attentions due to their dynamic and quick deployment with their relative low cost. In this article, we propose a new task offloading scheme for smart devices in the modern battlefield area. By the integrative platform of TBs, UAVs and smart devices, the main challenges are (i) providing a task splitting algorithm for the partial offloading service, and (ii) develop a TB resource sharing algorithm to handle the offloading requests. For convenient wireless communications, UAVs work as relay nodes between TBs and individual devices. To achieve a mutually desirable solution, our proposed scheme is formulated as cooperative game models. First, the <i>sequential Raiffa bargaining solution</i> is applied to split the computation-intensive task of each smart device in the battlefield area. Second, the <i>average-surplus value</i> is adopted to effectively share the TB computing resource. Based on the reciprocal combination of two cooperative game solutions, we explore the sequential interaction of TBs, UAVs and battlefield devices, and jointly design our integrated control scheme for offloading services. According to the synergy effect, our hybrid approach can provide a fair-efficient solution in the UAV-TB-assisted battlefield network infrastructure. Finally, extensive simulations are conducted, and the results demonstrate the superiority of our proposed scheme over the existing baseline protocols.</p>\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-024-02337-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02337-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Collaborative game-based task offloading scheme in the UAV-TB-assisted battlefield network platform
In the sixth-generation (6G) wireless networks, the use of unmanned aerial vehicles (UAVs) and tethered balloons (TBs) to assist cellular networks has attracted considerable attentions due to their dynamic and quick deployment with their relative low cost. In this article, we propose a new task offloading scheme for smart devices in the modern battlefield area. By the integrative platform of TBs, UAVs and smart devices, the main challenges are (i) providing a task splitting algorithm for the partial offloading service, and (ii) develop a TB resource sharing algorithm to handle the offloading requests. For convenient wireless communications, UAVs work as relay nodes between TBs and individual devices. To achieve a mutually desirable solution, our proposed scheme is formulated as cooperative game models. First, the sequential Raiffa bargaining solution is applied to split the computation-intensive task of each smart device in the battlefield area. Second, the average-surplus value is adopted to effectively share the TB computing resource. Based on the reciprocal combination of two cooperative game solutions, we explore the sequential interaction of TBs, UAVs and battlefield devices, and jointly design our integrated control scheme for offloading services. According to the synergy effect, our hybrid approach can provide a fair-efficient solution in the UAV-TB-assisted battlefield network infrastructure. Finally, extensive simulations are conducted, and the results demonstrate the superiority of our proposed scheme over the existing baseline protocols.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.