利用专业预测人员调查和贝叶斯量化回归对风险增长模型进行约束

IF 3.4 3区 经济学 Q1 ECONOMICS Journal of Forecasting Pub Date : 2024-03-07 DOI:10.1002/for.3120
Milan Szabo
{"title":"利用专业预测人员调查和贝叶斯量化回归对风险增长模型进行约束","authors":"Milan Szabo","doi":"10.1002/for.3120","DOIUrl":null,"url":null,"abstract":"<p>This study presents a novel and fully probabilistic approach for combining model-based forecasts with surveys or other judgmental forecasts. In our method, survey forecasts are integrated as penalty terms for the model parameters, facilitating a probabilistic exploration of additional insights obtained from surveys. We apply this approach to estimate a growth-at-risk model for real GDP growth in the United States. The results reveal that this additional shrinkage significantly improves prediction performance, with the information from surveys even exerting an influence on the lower tails of the distribution.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 6","pages":"1975-1981"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disciplining growth-at-risk models with survey of professional forecasters and Bayesian quantile regression\",\"authors\":\"Milan Szabo\",\"doi\":\"10.1002/for.3120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a novel and fully probabilistic approach for combining model-based forecasts with surveys or other judgmental forecasts. In our method, survey forecasts are integrated as penalty terms for the model parameters, facilitating a probabilistic exploration of additional insights obtained from surveys. We apply this approach to estimate a growth-at-risk model for real GDP growth in the United States. The results reveal that this additional shrinkage significantly improves prediction performance, with the information from surveys even exerting an influence on the lower tails of the distribution.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":\"43 6\",\"pages\":\"1975-1981\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3120\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3120","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新颖的全概率方法,用于将基于模型的预测与调查或其他判断性预测相结合。在我们的方法中,调查预测被整合为模型参数的惩罚项,从而促进了对从调查中获得的额外见解的概率探索。我们将这种方法用于估算美国实际 GDP 增长的风险增长模型。结果表明,这种额外的缩减显著提高了预测性能,来自调查的信息甚至对分布的低尾部产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disciplining growth-at-risk models with survey of professional forecasters and Bayesian quantile regression

This study presents a novel and fully probabilistic approach for combining model-based forecasts with surveys or other judgmental forecasts. In our method, survey forecasts are integrated as penalty terms for the model parameters, facilitating a probabilistic exploration of additional insights obtained from surveys. We apply this approach to estimate a growth-at-risk model for real GDP growth in the United States. The results reveal that this additional shrinkage significantly improves prediction performance, with the information from surveys even exerting an influence on the lower tails of the distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
期刊最新文献
Issue Information Issue Information Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning Demand Forecasting New Fashion Products: A Review Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1