{"title":"准线性抛物方程的无界斯特姆吸引子","authors":"Phillipo Lappicy, Juliana Fernandes","doi":"10.1017/s0013091524000129","DOIUrl":null,"url":null,"abstract":"We analyse the asymptotic dynamics of quasilinear parabolic equations when solutions may grow up (i.e. blow up in infinite time). For such models, there is a global attractor which is unbounded and the semiflow induces a nonlinear dynamics at infinity by means of a Poincaré projection. In case the dynamics at infinity is given by a semilinear equation, then it is gradient, consisting of the so-called equilibria at infinity and their corresponding heteroclinics. Moreover, the diffusion and reaction compete for the dimensionality of the induced dynamics at infinity. If the equilibria are hyperbolic, we explicitly prove the occurrence of heteroclinics between bounded equilibria and/or equilibria at infinity. These unbounded global attractors describe the space of admissible initial data at event horizons of certain black holes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbounded Sturm attractors for quasilinear parabolic equations\",\"authors\":\"Phillipo Lappicy, Juliana Fernandes\",\"doi\":\"10.1017/s0013091524000129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse the asymptotic dynamics of quasilinear parabolic equations when solutions may grow up (i.e. blow up in infinite time). For such models, there is a global attractor which is unbounded and the semiflow induces a nonlinear dynamics at infinity by means of a Poincaré projection. In case the dynamics at infinity is given by a semilinear equation, then it is gradient, consisting of the so-called equilibria at infinity and their corresponding heteroclinics. Moreover, the diffusion and reaction compete for the dimensionality of the induced dynamics at infinity. If the equilibria are hyperbolic, we explicitly prove the occurrence of heteroclinics between bounded equilibria and/or equilibria at infinity. These unbounded global attractors describe the space of admissible initial data at event horizons of certain black holes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091524000129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0013091524000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unbounded Sturm attractors for quasilinear parabolic equations
We analyse the asymptotic dynamics of quasilinear parabolic equations when solutions may grow up (i.e. blow up in infinite time). For such models, there is a global attractor which is unbounded and the semiflow induces a nonlinear dynamics at infinity by means of a Poincaré projection. In case the dynamics at infinity is given by a semilinear equation, then it is gradient, consisting of the so-called equilibria at infinity and their corresponding heteroclinics. Moreover, the diffusion and reaction compete for the dimensionality of the induced dynamics at infinity. If the equilibria are hyperbolic, we explicitly prove the occurrence of heteroclinics between bounded equilibria and/or equilibria at infinity. These unbounded global attractors describe the space of admissible initial data at event horizons of certain black holes.