用于压载建模的网格-离散元素混合法

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Particle Mechanics Pub Date : 2024-03-07 DOI:10.1007/s40571-024-00723-0
{"title":"用于压载建模的网格-离散元素混合法","authors":"","doi":"10.1007/s40571-024-00723-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Railway ballast modeling can be performed by different approaches, through continuous or discrete models, which have their comparative advantages and disadvantages, such as excessive volumes of material for testing and calibration steps. This paper aims to adapt and propose the use of the Hybrid Lattice-Discrete Element Method for modeling railway ballast aggregates. The advantages of using this technique for this purpose are: (i) one-step calibration of the rock material from laboratory test results; (ii) simulation of fractures in rock materials; (iii) visualization of micromechanical phenomena, such as particle slippage and fracture modes; (iv) realistic representation of various geometries compared to the conventional use of the Discrete Element Method. First, parameter calibration was performed from laboratory test results on granite rock obtained from the literature. Then, particle generation, Voronoi discretization and packing algorithms were used to build models of railway ballast samples. These models were used to simulate mechanical tests, namely single particle compression, confined uniaxial compression, monotonic triaxial compression and cyclic triaxial compression. There was consistency between the results and the empirical observations reported in the literature. In addition, variations in particle size distribution were observed during the simulations, as well as the causes of failure in each specimen, either by shear or particle breakage, in addition to the fracture modes of the ballast aggregates. By analyzing these elements together, knowledge is obtained about the phenomena occurring inside the railway ballast under different loading conditions, in addition to the results of strength, failure and deformation. Finally, it is concluded that the proposed method is effective for modeling railway ballast, besides being versatile, allowing to simulate the material for different loading configurations and boundary conditions.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Lattice-discrete element method for ballast modeling\",\"authors\":\"\",\"doi\":\"10.1007/s40571-024-00723-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Railway ballast modeling can be performed by different approaches, through continuous or discrete models, which have their comparative advantages and disadvantages, such as excessive volumes of material for testing and calibration steps. This paper aims to adapt and propose the use of the Hybrid Lattice-Discrete Element Method for modeling railway ballast aggregates. The advantages of using this technique for this purpose are: (i) one-step calibration of the rock material from laboratory test results; (ii) simulation of fractures in rock materials; (iii) visualization of micromechanical phenomena, such as particle slippage and fracture modes; (iv) realistic representation of various geometries compared to the conventional use of the Discrete Element Method. First, parameter calibration was performed from laboratory test results on granite rock obtained from the literature. Then, particle generation, Voronoi discretization and packing algorithms were used to build models of railway ballast samples. These models were used to simulate mechanical tests, namely single particle compression, confined uniaxial compression, monotonic triaxial compression and cyclic triaxial compression. There was consistency between the results and the empirical observations reported in the literature. In addition, variations in particle size distribution were observed during the simulations, as well as the causes of failure in each specimen, either by shear or particle breakage, in addition to the fracture modes of the ballast aggregates. By analyzing these elements together, knowledge is obtained about the phenomena occurring inside the railway ballast under different loading conditions, in addition to the results of strength, failure and deformation. Finally, it is concluded that the proposed method is effective for modeling railway ballast, besides being versatile, allowing to simulate the material for different loading configurations and boundary conditions.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00723-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00723-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 铁路道碴建模可通过连续或离散模型等不同方法进行,这些方法各有优缺点,如测试和校准步骤的材料量过大。本文旨在调整并建议使用网格-离散元素混合法为铁路道碴集料建模。使用该技术的优势在于(i) 根据实验室测试结果对岩石材料进行一步校准;(ii) 模拟岩石材料中的裂缝;(iii) 微机械现象可视化,如颗粒滑动和断裂模式;(iv) 与传统的离散元素法相比,可真实地表示各种几何形状。首先,根据从文献中获得的花岗岩石实验室测试结果进行参数校准。然后,使用颗粒生成、沃罗诺离散化和堆积算法建立铁路道碴样本模型。这些模型用于模拟机械测试,即单颗粒压缩、约束单轴压缩、单调三轴压缩和循环三轴压缩。试验结果与文献报道的经验观察结果一致。此外,在模拟过程中还观察到了颗粒大小分布的变化,以及每个试样的破坏原因(剪切或颗粒断裂)和压载集料的断裂模式。通过对这些要素进行综合分析,可以了解铁路道碴在不同加载条件下的内部现象,以及强度、破坏和变形的结果。最后,得出的结论是,所提出的方法对铁路道碴建模非常有效,而且用途广泛,可以模拟不同加载配置和边界条件下的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Lattice-discrete element method for ballast modeling

Abstract

Railway ballast modeling can be performed by different approaches, through continuous or discrete models, which have their comparative advantages and disadvantages, such as excessive volumes of material for testing and calibration steps. This paper aims to adapt and propose the use of the Hybrid Lattice-Discrete Element Method for modeling railway ballast aggregates. The advantages of using this technique for this purpose are: (i) one-step calibration of the rock material from laboratory test results; (ii) simulation of fractures in rock materials; (iii) visualization of micromechanical phenomena, such as particle slippage and fracture modes; (iv) realistic representation of various geometries compared to the conventional use of the Discrete Element Method. First, parameter calibration was performed from laboratory test results on granite rock obtained from the literature. Then, particle generation, Voronoi discretization and packing algorithms were used to build models of railway ballast samples. These models were used to simulate mechanical tests, namely single particle compression, confined uniaxial compression, monotonic triaxial compression and cyclic triaxial compression. There was consistency between the results and the empirical observations reported in the literature. In addition, variations in particle size distribution were observed during the simulations, as well as the causes of failure in each specimen, either by shear or particle breakage, in addition to the fracture modes of the ballast aggregates. By analyzing these elements together, knowledge is obtained about the phenomena occurring inside the railway ballast under different loading conditions, in addition to the results of strength, failure and deformation. Finally, it is concluded that the proposed method is effective for modeling railway ballast, besides being versatile, allowing to simulate the material for different loading configurations and boundary conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
期刊最新文献
Two-scale concurrent simulations for crack propagation using FEM–DEM bridging coupling In silico design-space analysis of a novel tablet coating process using advanced modeling Accurate prediction of generalized oil–water interface evolution with a novel multiphase SPH scheme The virtual stress boundary method to impose nonconforming Neumann boundary conditions in the material point method Effect of particle diameter and void fraction on gas–solid two-phase flow: a numerical investigation using the Eulerian–Eulerian approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1