开发用于傅立叶变换红外显微镜图像中微塑料分析的机器学习模型

IF 1.7 4区 化学 Bulletin of the Korean Chemical Society Pub Date : 2024-03-07 DOI:10.1002/bkcs.12835
Eunwoo Choi, Yejin Choi, Hyoyoung Lee, Jae-Woo Kim, Han Bin Oh
{"title":"开发用于傅立叶变换红外显微镜图像中微塑料分析的机器学习模型","authors":"Eunwoo Choi,&nbsp;Yejin Choi,&nbsp;Hyoyoung Lee,&nbsp;Jae-Woo Kim,&nbsp;Han Bin Oh","doi":"10.1002/bkcs.12835","DOIUrl":null,"url":null,"abstract":"<p>The escalating concern regarding microplastics (MPs) in the environment has recently accentuated the need for comprehensive analyses across various matrices. Fourier Transfrom Infrared (FT-IR) microscopy is widely used method for MP identification, but challenges arise due to the presence of secondary materials on real samples, causing inaccuracies in spectral matching. To tackle this issue, we propose a solution: a 1D-convolution neural network (1D-CNN) machine-learning model classifying FT-IR spectra into 16 polymer species. Using a dataset of 5413 spectra, with 80% (4330) for training and 20% (1083) for external testing, our method achieved 98.59% accuracy for cross-validation and 92.34% for external validation. This study underscores the efficacy of machine learning in discerning polymer types among MPs, even in real samples tainted by secondary materials. The implementation of our 1D-CNN model marks a significant leap in overcoming conventional method limitations, providing a robust tool for accurately unraveling MPs intricacies in environmental matrices.</p>","PeriodicalId":54252,"journal":{"name":"Bulletin of the Korean Chemical Society","volume":"45 5","pages":"472-481"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a machine-learning model for microplastic analysis in an FT-IR microscopy image\",\"authors\":\"Eunwoo Choi,&nbsp;Yejin Choi,&nbsp;Hyoyoung Lee,&nbsp;Jae-Woo Kim,&nbsp;Han Bin Oh\",\"doi\":\"10.1002/bkcs.12835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The escalating concern regarding microplastics (MPs) in the environment has recently accentuated the need for comprehensive analyses across various matrices. Fourier Transfrom Infrared (FT-IR) microscopy is widely used method for MP identification, but challenges arise due to the presence of secondary materials on real samples, causing inaccuracies in spectral matching. To tackle this issue, we propose a solution: a 1D-convolution neural network (1D-CNN) machine-learning model classifying FT-IR spectra into 16 polymer species. Using a dataset of 5413 spectra, with 80% (4330) for training and 20% (1083) for external testing, our method achieved 98.59% accuracy for cross-validation and 92.34% for external validation. This study underscores the efficacy of machine learning in discerning polymer types among MPs, even in real samples tainted by secondary materials. The implementation of our 1D-CNN model marks a significant leap in overcoming conventional method limitations, providing a robust tool for accurately unraveling MPs intricacies in environmental matrices.</p>\",\"PeriodicalId\":54252,\"journal\":{\"name\":\"Bulletin of the Korean Chemical Society\",\"volume\":\"45 5\",\"pages\":\"472-481\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Korean Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12835\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Korean Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bkcs.12835","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近来,人们对环境中的微塑料(MPs)的关注不断升级,这就更加需要对各种基质进行全面分析。傅立叶变换红外(FT-IR)显微镜是一种广泛应用的微塑料识别方法,但由于实际样品中存在二次物质,导致光谱匹配不准确,从而带来了挑战。为解决这一问题,我们提出了一种解决方案:一维卷积神经网络(1D-CNN)机器学习模型,将傅立叶变换红外光谱分为 16 种聚合物。我们的方法使用了一个包含 5413 个光谱的数据集,其中 80% (4330 个)用于训练,20% (1083 个)用于外部测试,交叉验证的准确率达到 98.59%,外部验证的准确率达到 92.34%。这项研究强调了机器学习在辨别多孔质聚合物类型方面的功效,即使是在受到二次材料污染的真实样品中也是如此。我们的 1D-CNN 模型的实施标志着在克服传统方法局限性方面的重大飞跃,为准确揭示环境基质中错综复杂的 MPs 提供了强有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a machine-learning model for microplastic analysis in an FT-IR microscopy image

The escalating concern regarding microplastics (MPs) in the environment has recently accentuated the need for comprehensive analyses across various matrices. Fourier Transfrom Infrared (FT-IR) microscopy is widely used method for MP identification, but challenges arise due to the presence of secondary materials on real samples, causing inaccuracies in spectral matching. To tackle this issue, we propose a solution: a 1D-convolution neural network (1D-CNN) machine-learning model classifying FT-IR spectra into 16 polymer species. Using a dataset of 5413 spectra, with 80% (4330) for training and 20% (1083) for external testing, our method achieved 98.59% accuracy for cross-validation and 92.34% for external validation. This study underscores the efficacy of machine learning in discerning polymer types among MPs, even in real samples tainted by secondary materials. The implementation of our 1D-CNN model marks a significant leap in overcoming conventional method limitations, providing a robust tool for accurately unraveling MPs intricacies in environmental matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of the Korean Chemical Society
Bulletin of the Korean Chemical Society Chemistry-General Chemistry
自引率
23.50%
发文量
182
期刊介绍: The Bulletin of the Korean Chemical Society is an official research journal of the Korean Chemical Society. It was founded in 1980 and reaches out to the chemical community worldwide. It is strictly peer-reviewed and welcomes Accounts, Communications, Articles, and Notes written in English. The scope of the journal covers all major areas of chemistry: analytical chemistry, electrochemistry, industrial chemistry, inorganic chemistry, life-science chemistry, macromolecular chemistry, organic synthesis, non-synthetic organic chemistry, physical chemistry, and materials chemistry.
期刊最新文献
Masthead Cover Picture: Synthesis and computational studies for halide-free, neutral, and bifunctional one-component ferrocene-based catalysts for the coupling of carbon dioxide and epoxides (BKCS 10/2024) Jieun Lee, Wooram Lee, Yoseph Kim, Mujin Choi, Seol Ryu, Joonkyung Jang, Youngjo Kim Cost-effective synthesis of unsymmetric tetrazines Moisture-resistant nitroaromatic explosive gas sensor based on hydrophilic pentiptycene polymer Synthesis and computational studies for halide-free, neutral, and bifunctional one-component ferrocene-based catalysts for the coupling of carbon dioxide and epoxides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1